Skip to main content
Log in

Deuterium Tracer Experiments Prove the Thiophenic Hydrogen Involvement During the Initial Step of Thiophene Hydrodesulfurization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We reassess literature data and demonstrate that the intermolecular hydrogen transfer occur likely during the primary catalytic interaction between thiophene molecules, rendering it the credible thiophene hydrodesulfurization (HDS) pathway. Deuterium tracer experiments prove that thiophenic hydrogen plays a part in direct C–S cleavage, in the initial step of thiophene HDS. Hypothetical surface intermediates for thiophene exchange do not precede, i.e. do not form prior to the surface intermediates for thiophene HDS. Therefore the established thiophene exchange/HDS scheme and the sequence of events are not the viable concepts. Since the deuterium data also indicate that C4H5S(a)—radicals are not formed this means there are no common surface or reaction intermediates for the thiophene exchange and HDS and both reactions proceed parallel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuman SC, Shalit H (1971) Catal Rev 4:245

    Article  Google Scholar 

  2. Amberg CH (1974) J Less Common Met 36:339

    Article  CAS  Google Scholar 

  3. Zdrazil M (1982) Appl Catal 4:107

    Article  CAS  Google Scholar 

  4. Vrinat ML (1983) Appl Catal 6:137

    Article  CAS  Google Scholar 

  5. Prins R, De Beer VHJ, Samorjai GA (1989) Catal Rev 31:1

    Article  CAS  Google Scholar 

  6. Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. Science and technology. In: Anderson JR, Boudart M (eds) Catalysis—science and technology, vol 11. Springer-Verlag, Berlin

    Google Scholar 

  7. Kraus J, Zdrazil M (1977) React Kinet Catal Lett 6:475

    Article  CAS  Google Scholar 

  8. Kieran P, Kemball C (1965) J Catal 4:394

    Article  CAS  Google Scholar 

  9. Sullivan L, Ekerdt JG (1998) J Catal 178:226

    Article  CAS  Google Scholar 

  10. Devanneaux J, Maurin J (1981) J Catal 69:202

    Article  CAS  Google Scholar 

  11. Kolboe S (1969) Can J Chem 47:352

    Article  CAS  Google Scholar 

  12. Satterfield CN, Roberts GW (1968) J Am Inst Chem Eng 14:159

    CAS  Google Scholar 

  13. Borgna A, Hensen EJM, Coulier L, de Croon MHJM, Schouten JC, van Veen JAR, Niemantsverdriet JW (2003) Catal Lett 90:117

    Article  CAS  Google Scholar 

  14. Massoth FE (1977) J Catal 47:316

    Article  CAS  Google Scholar 

  15. Lee HC, Butt JB (1977) J Catal 49:320

    Article  CAS  Google Scholar 

  16. Gellman AJ, Neiman D, Somorjai GA (1987) J Catal 107:92

    Article  CAS  Google Scholar 

  17. Gellman AJ, Bussell ME, Somorjai GA (1987) J Catal 107:103

    Article  CAS  Google Scholar 

  18. Hensen EJM, Vissenberg MJ, de Beer VHJ, van Veen JAR, van Santen RA (1996) J Catal 163:429

    Article  CAS  Google Scholar 

  19. Smith GV, Hincley CC, Behbahany F (1973) J Catal 30:218

    Article  CAS  Google Scholar 

  20. Cowley SW (1975) Ph.D. Dissertation. Southern Illinois University, Carbondate, Illinois

  21. Markel EJ, Schrader GL, Sauer NN, Angelici RJ (1989) J Catal 116:11

    Article  CAS  Google Scholar 

  22. Mikovsky RI, Silvestri AI, Heineman H (1974) J Catal 34:324

    Article  CAS  Google Scholar 

  23. Katsapov GYa, Khalikov RKh, Talipov GSh, Gudkov BS, Nekrasov NV (1978) Neftekhimiya 18:426

    CAS  Google Scholar 

  24. Katsapov GYa, Serodzhev AT (1986) React Kinet Catal Lett 31:221

    Article  CAS  Google Scholar 

  25. McCarty KF, Schrader GL (1987) J Catal 103:261

    Article  CAS  Google Scholar 

  26. Benson JW, Schrader GL, Angelici RJ (1995) J Mol Catal 96:283

    Article  CAS  Google Scholar 

  27. Turkevich J, Taylor HS (1934) J Am Chem Soc 56:2254

    Article  CAS  Google Scholar 

  28. Horiuty J, Polanyi M (1934) Trans Faraday Soc 30:1164

    Article  Google Scholar 

  29. Kemball C (1972) Catal Rev 5:33

    Article  Google Scholar 

Download references

Acknowledgments

During the preparation of this manuscript, A.B. had financial support by the European Union (Real-SOFC contract # SES6-CT-2003-502612, and Marie Curie contract MIRG-CT-2006-042095), and by the Swiss Competence Center for Energy and Mobility CCEM (project “Computational Engineering of Multi-Scale Transport in Small-Scale Surface Based Energy Conversion”, CEMTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Braun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsapov, G.Y., Braun, A. Deuterium Tracer Experiments Prove the Thiophenic Hydrogen Involvement During the Initial Step of Thiophene Hydrodesulfurization. Catal Lett 138, 224–230 (2010). https://doi.org/10.1007/s10562-010-0400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0400-6

Keywords

Navigation