Skip to main content
Log in

Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two manganese-containing catalysts have been employed in the oxidation with hydrogen peroxide of two reactive alcohols (1-phenylethanol and glycerol): soluble catalyst [LMn(μ-O)3MnL](PF6)2 (1a) and heterogenized catalyst [LMn(μ-O)3MnL]2[SiW12O40] (1b) (L is 1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN). Oxidation of 1-phenylethanol catalyzed by 1a in acetonitrile solution proceeds at room temperature in the presence of a small amount of oxalic acid; the turnover number attains 15,000 after 3 h. It has been proposed on the basis of the kinetic study that an oxidizing species is a manganyl species containing fragment “Mn=O” rather that hydroxyl radical. This species reacts competitively with the alcohol, acetonitrile and hydrogen peroxide. In the case of 1b dependences of the initial rates of acetophenone accumulation on concentration of the alcohol and amount of 1b have plateau. Both homogeneous and heterogeneous catalysts are efficient in the oxidation of glycerol to produce dihydroxyacetone (DHA) as the main product. The oxidation catalyzed by 1a is one of the first examples of the glycerol oxidation by a catalytic homogeneous system. The yield of valuable products attained 45%. The oxidation of DHA in the absence of glycerol afforded mainly glycolic acid in yield 60% based on the starting DHA. The oxidation on 1b represents the first example of the glycerol transformation catalyzed by a heterogenized metal complex. Under certain conditions yields of products of deeper oxidation (glyceric, glycolic and hydroxypyruvic acids) are somewhat higher than the yield of dihydroxyacetone. Special experiments demonstrated that no leaching of active species occurs from catalyst 1b to the solution and that this catalyst can be re-used at least four times without substantial loss of activity.

Graphical Abstract

Manganese-containing complexes are very efficient catalysts in the oxidation of reactive alcohols (1-phenylethanol and glycerol) with H2O2: soluble [LMn(O)3MnL](PF6)2 and heterogenized [LMn(O)3MnL]2[SiW12O40] (L is 1,4,7-trimethyl-1,4,7-triazacyclononane).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 4
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strukul G (ed) (1992) Catalytic oxidations with hydrogen peroxide as oxidant. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Muzart J (2003) Tetrahedron 59:5789–5816

    Article  CAS  Google Scholar 

  3. Marko IE, Giles PR, Tsukazaki M, Gautier A, Dumeunier R, Doda K, Philippart F, Chellé-Regnault I, Mutonkole J-L, Brown SM, Urch CJ (2004) Aerobic, metal-catalyzed oxidation of alcohols. In: Beller M, Bolm C (eds) Transition metals for organic synthesis, vol 2, 2nd edn. Wiley–VCH: Weinheim/New York, pp 437–478

  4. Mallat T, Baiker A (2004) Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  5. Tojo G, Fernandez M (2006) Oxidation of alcohols to aldehydes and ketones. Springer Science, Business Media, Inc, New York

    Google Scholar 

  6. Seki T, Baiker A (2009) Chem Rev 109:2409–2454

    Article  CAS  Google Scholar 

  7. Prati L, Porta F (2005) Appl Catal A: General 291:199–203

    Article  CAS  Google Scholar 

  8. Korovchenko P, Donze C, Gallezot P, Besson M (2007) Catal Today 121:13–21

    Article  CAS  Google Scholar 

  9. Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pombeiro AJL (2009) J Mol Catal A: Chem 305:178–182

    Article  CAS  Google Scholar 

  10. Jiang N, Vinci D, Liotta CL, Eckert CA, Ragauskas AJ (2008) Ind Eng Chem Res 47:627–631

    Article  CAS  Google Scholar 

  11. Haider P, Grunwaldt J-D, Baiker A (2009) Catal Today 141:349–354

    Article  CAS  Google Scholar 

  12. Figiel PJ, Sobczak JM (2009) J Catal 263:167–172

    Article  CAS  Google Scholar 

  13. Pérez BM, Hartung J (2009) Tetrahedron Lett 50:960–962

    Article  CAS  Google Scholar 

  14. Villa A, Janjic N, Spontoni P, Wang D, Su DS, Prati L (2009) Appl Catal A: General 364:221–228

    Article  CAS  Google Scholar 

  15. Lecomte V, Bolm C (2005) Adv Synth Catal 347:1666–1672

    Article  CAS  Google Scholar 

  16. Shi F, Tse MK, Pohl M-M, Radnik J, Brückner A, Zhang S, Beller M (2008) J Mol Catal A: Chem 292:28–35

    Article  CAS  Google Scholar 

  17. Hida T, Nogusa H (2009) Tetrahedron 65:270–274

    Article  CAS  Google Scholar 

  18. Ye Z, Fu Z, Zhong S, Xie F, Zhou X, Liu F, Yin D (2009) J Catal 261:110–115

    Article  CAS  Google Scholar 

  19. Lounis Z, Riahi A, Djafri F, Muzart J (2006) Appl Catal A: General 309:270–272

    Article  CAS  Google Scholar 

  20. Tarlani A, Riahi A, Abedini M, Amini MM, Muzart J (2006) Appl Catal A: General 315:150–152

    Article  CAS  Google Scholar 

  21. Della Pina C, Falletta E, Rossi M (2008) J Catal 260:384–386

    Article  CAS  Google Scholar 

  22. Haider P, Kimmerle B, Krumeich F, Kleist S, Grunwaldt J-D, Baiker A (2008) Catal Lett 125:169–176

    Article  CAS  Google Scholar 

  23. Xu S, Yan X, Yao Y, He X, Chen Y (2009) Shiyou Huagong (Petrochemical Technology) 38:193–196

    Google Scholar 

  24. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Bethell D, Hutchings GJ (2009) Phys Chem Chem Phys 11:5142–5153

    Article  CAS  Google Scholar 

  25. Van Gerpen J (2005) Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  26. da Silva CRB, Gonçalves VLC, Lachter ER, Mota CJA (2009) J Braz Chem Soc 20:201–204

    CAS  Google Scholar 

  27. de Rezende SM, de Castro Reis M, Reid MG, Silva PL Jr, Coutinho FMB, Gil RASS, Lachter ER (2008) Appl Catal A: General 349:198–203

    Article  CAS  Google Scholar 

  28. Sels B, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Centi G, van Santen RA (eds) Catalysis for renewables. Wiley-VCH Verlag, Weinheim, pp 223–255

    Chapter  Google Scholar 

  29. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  30. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chem Soc Rev 37:527–549

    Article  CAS  Google Scholar 

  31. Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253–5277

    Article  CAS  Google Scholar 

  32. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30

    Article  CAS  Google Scholar 

  33. Pagliaro M, Rossi M (2008) The future of glycerol. New usages for a versatile raw material. RSC Publishing, Cambridge, p 128

    Google Scholar 

  34. Behr A (2008) ChemSusChem 1:653

    Article  CAS  Google Scholar 

  35. Garcia R, Besson M, Gallezot P (1995) Appl Catal A: General 127:165–176

    Article  CAS  Google Scholar 

  36. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329–1336

    Article  CAS  Google Scholar 

  37. Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102–103:203–212

    Article  CAS  Google Scholar 

  38. Dimitratos N, Lopez-Sanchez JA, Lennon D, Porta F, Prati L, Villa A (2006) Catal Lett 108:147–153

    Article  CAS  Google Scholar 

  39. Ketchie WC, Murayama M, Davis RJ (2007) J Catal 250:264–273

    Article  CAS  Google Scholar 

  40. Taarning E, Madsen AT, Marchetti JM, Egeblad K, Christensen CH (2008) Green Chem 10:408–414

    Article  CAS  Google Scholar 

  41. Maurino V, Bedini A, Minella M, Rubertelli F, Pelizetti E, Minero C (2008) J Adv Oxid Tech 11:184–192

    CAS  Google Scholar 

  42. Pollington SD, Enache DI, Landon P, Meenakshisundaram S, Dimitratos N, Wagland A, Hutchings GJ, Stitt EH (2009) Catal Today 145:169–175

    Article  CAS  Google Scholar 

  43. Prati L, Spontoni P, Gaiassi A (2009) Top Catal 52:288–296

    Article  CAS  Google Scholar 

  44. Thomas JM, Hernandez-Garrido JC, Bell RG (2009) Top Catal 52:1630–1639

    Article  CAS  Google Scholar 

  45. Liang D, Gao J, Wang J, Chen P, Hou Z, Zheng X (2009) Catal Commun 10:1586–1590

    Article  CAS  Google Scholar 

  46. Dimitratos N, Villa A, Prati L (2009) Catal Lett 133:334–340

    Article  CAS  Google Scholar 

  47. Rennard DC, Kruger JS, Schmidt LD (2009) ChemSusChem 2:89–98

    Article  CAS  Google Scholar 

  48. Demirel-Gülen S, Lucas M, Claus P (2005) Catal Today 102–103:166–172

    Article  CAS  Google Scholar 

  49. Demirel S, Kern P, Lucas M, Claus P (2007) Catal Today 122:292–300

    Article  CAS  Google Scholar 

  50. Demirel S, Lucas M, Wärnå J, Salmi T, Murzin D, Claus P (2007) Top Catal 44:299–305

    Article  CAS  Google Scholar 

  51. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  52. Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10:1921–1930

    Article  CAS  Google Scholar 

  53. Dimitratos N, Lopez-Sanchez JA, Anthonykutty JM, Brett G, Carley AF, Tiruvalam RC, Herzing AA, Kiely CJ, Knight DW, Hutchings GJ (2009) Phys Chem Chem Phys 11:4952–4961

    Article  CAS  Google Scholar 

  54. Dimitratos N, Lopez-Sanchez JA, Anthonykutty JM, Brett G, Carley AF, Taylor SH, Knight DW, Hutchings GJ (2009) Green Chem 11:1209–1216

    Article  CAS  Google Scholar 

  55. Clejan LA, Cederbaum AI (1992) FASEB J 6:765–770

    CAS  Google Scholar 

  56. Rashba-Step J, Step E, Turro NJ, Cederbaum AI (1994) Biochemistry 33:9504–9510

    Article  CAS  Google Scholar 

  57. Liebminger S, Siebenhofer M, Guebitz G (2009) Bioresour Technol 100:4541–4545

    Article  CAS  Google Scholar 

  58. da Silva GP, Mack M, Contiero J (2009) Biotechnol Adv 27:30–39

    Article  CAS  Google Scholar 

  59. Bauer R, Katsikis N, Varga S, Hekmat D (2005) Bioprocess Biosyst Eng 28:37–43

    Article  CAS  Google Scholar 

  60. McMorn P, Roberts G, Hutchings GJ (1999) Catal Lett 63:193–197

    Article  CAS  Google Scholar 

  61. Luque R, Budarin V, Clark JH, Macquarrie DJ (2008) Appl Catal B: Environ 82:157–162

    Article  CAS  Google Scholar 

  62. Sankar M, Dimitratos N, Knight DW, Carley AF, Tiruvalam R, Kiely CJ, Thomas D, Hutchings GJ (2009) ChemSusChem 2:1145–1151

    Article  CAS  Google Scholar 

  63. Laurie VF, Waterhouse AL (2006) J Agric Food Chem 54:4668–4673

    Article  CAS  Google Scholar 

  64. Dimitratos N, Messi C, Porta F, Prati L, Villa A (2006) J Mol Catal A: Chem 256:21–28

    Article  CAS  Google Scholar 

  65. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Appl Catal A: General 96:217–228

    Article  CAS  Google Scholar 

  66. Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B: Environ 70:637–643

    Article  CAS  Google Scholar 

  67. Brandner A, Lehnert K, Bienholz A, Luca M, Claus P (2009) Top Catal 52:278–287

    Article  CAS  Google Scholar 

  68. Brandner A, Claus P (2009) 6th World congress on oxidation catalysis, Lille, France, report 3B-552

  69. Wörz N, Brandner A, Claus P (2010) J Phys Chem C 114:1164–1172

    Article  CAS  Google Scholar 

  70. Shul’pin GB, Lindsay Smith JR (1998) Russ Chem Bull 47:2379–2386

    Article  Google Scholar 

  71. Shul’pin GB, Süss-Fink G, Lindsay Smith JR (1999) Tetrahedron 55:5345–5358

    Article  Google Scholar 

  72. Shul’pin GB, Süss-Fink G, Shul’pina LS (2001) J Mol Catal A: Chem 170:17–34

    Article  Google Scholar 

  73. Shul’pin GB, Nizova GV, Kozlov YN, Pechenkina IG (2002) New J Chem 26:1238–1245

    Article  CAS  Google Scholar 

  74. Woitiski CB, Kozlov YN, Mandelli D, Nizova GV, Schuchardt U, Shul’pin GB (2004) J Mol Catal A: Chem 222:103–119

    CAS  Google Scholar 

  75. Shul’pin GB, Nizova GV, Kozlov YN, Arutyunov VS, dos Santos ACM, Ferreira ACT, Mandelli D (2005) J Organometal Chem 690:4498–4504

    Article  CAS  Google Scholar 

  76. Mandelli D, Steffen RA, Shul’pin GB (2006) React Kinet Catal Lett 88:165–174

    Article  CAS  Google Scholar 

  77. dos Santos VA, Shul’pina LS, Veghini D, Mandelli D, Shul’pin GB (2006) React Kinet Catal Lett 88:339–348

    Article  CAS  Google Scholar 

  78. Nizova GV, Shul’pin GB (2007) Tetrahedron 63:7997–8001

    Article  CAS  Google Scholar 

  79. Shul’pin GB, Matthes MG, Romakh VB, Barbosa MIF, Aoyagi JLT, Mandelli D (2008) Tetrahedron 64:2143–2152

    Article  CAS  Google Scholar 

  80. Shul’pin GB, Kozlov YN, Kholuiskaya SN, Plieva MI (2009) J Mol Catal A: Chem 299:77–87

    Article  CAS  Google Scholar 

  81. Lindsay Smith JR, Shul’pin GB (1998) Tetrahedron Lett 39:4909–4912

    Article  CAS  Google Scholar 

  82. Nizova GV, Bolm C, Ceccarelli S, Pavan C, Shul’pin GB (2002) Adv Synth Catal 344:899–905

    Article  CAS  Google Scholar 

  83. Süss-Fink G, Shul’pin GB, Shul’pina LS (2002) Process for the production of ketones. U.S. Patent 7,015,358, March 21, 2006 (Filed 2002, to Lonza A.-G., Switzerland). Eur Patent EP 1 385812 A0 (Application: WO 02/088063, art. 158 of the EPC)

  84. Mandelli D, Woitiski CB, Schuchardt U, Shul’pin GB (2002) Chem Natur Comp 38:243–245

    Article  CAS  Google Scholar 

  85. Kozlov YN, Mandelli D, Woitiski CB, Shul’pin GB (2004) Russ J Phys Chem 78:370–374

    Google Scholar 

  86. Romakh VB, Therrien B, Karmazin-Brelot L, Labat G, Stoeckli-Evans H, Shul’pin GB, Süss-Fink G (2006) Inorg Chim Acta 359:1619–1626

    Article  CAS  Google Scholar 

  87. Romakh VB, Therrien B, Süss-Fink G, Shul’pin GB (2007) Inorg Chem 46:1315–1331

    Article  CAS  Google Scholar 

  88. Shilov AE, Shul’pin GB (2000) Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Dordrecht/Boston/London, Kluwer Academic Publishers

    Google Scholar 

  89. Shul’pin GB (2002) J Mol Catal A: Chem 189:39–66

    Article  Google Scholar 

  90. Shul’pin GB (2003) Comptes Rendus, Chimie 6:163–178

    Article  CAS  Google Scholar 

  91. Shul’pin GB (2004) Oxidations of C–H compounds catalyzed by metal complexes. In: Beller M, Bolm C (eds) Transition metals for organic synthesis, vol 2, Chap 2.2, 2nd edn, Wiley–VCH: Weinheim/New York, pp 215–242

  92. Tanase S, Bouwman E (2006) Adv Inorg Chem 58:29–75

    Article  CAS  Google Scholar 

  93. Sibbons KF, Shastri K, Watkinson M (2006) J Chem Soc Dalton Trans, 645–661

  94. Shul’pin GB (2009) Mini-Rev Org Chem 6:95–104

    Article  Google Scholar 

  95. Shul’pin GB (2001) Petrol Chem 41:405–412

    Google Scholar 

  96. Kozlov YN, Nizova GV, Shul’pin GB (2008) J Phys Org Chem 21:119–126

    Article  CAS  Google Scholar 

  97. Mandelli D, Kozlov YN, Golfeto CC, Shul’pin GB (2007) Catal Lett 118:22–29

    Article  CAS  Google Scholar 

  98. Veghini D, Bosch M, Fischer F, Falco C (2008) Catal Commun 10:347–350

    Article  CAS  Google Scholar 

  99. Dorfman LM, Adams GE (1973) Reactivity of the hydroxyl radical in aqueous solutions, NSRDS-NBS 46, Washington DC

  100. Farhataziz, Ross AB (1977) Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions. NSRDS-NBS 59, Washington DC

  101. Shul’pin GB, Nizova GV, Kozlov YN, Gonzalez Cuervo L, Süss-Fink G (2004) Adv Synth Catal 346:317–332

    Article  CAS  Google Scholar 

  102. Gómez L, Garcia-Bosch I, Company A, Sala X, Fontrodona X, Ribas X, Costas M (2007) Dalton Trans 5539–5545

  103. Song WJ, Seo MS, George SD, Ohta T, Song R, Kang M-J, Tosha T, Kitagawa T, Solomon EI, Nam W (2007) J Am Chem Soc 129:1268–1277

    Article  CAS  Google Scholar 

  104. Zhang R, Newcomb M (2008) Acc Chem Res 41:468–477

    Article  CAS  Google Scholar 

  105. Serafimidou A, Stamatis A, Louloudi M (2008) Catal Commun 9:35–39

    Article  CAS  Google Scholar 

  106. Balcells D, Raynaud C, Crabtree RH, Eisenstein O (2008) Inorg Chem 47:10090–10099

    Article  CAS  Google Scholar 

  107. Ember E, Rothbart S, Puchta R, van Eldik R (2009) New J Chem 33:34–49

    Article  CAS  Google Scholar 

  108. Castaman ST, Nakagaki S, Ribeiro RR, Ciuffi KJ, Drechsel SM (2009) J Mol Catal A: Chem 300:89–97

    Article  CAS  Google Scholar 

  109. Bolm C, Meyer N, Raabe G, Weyhermüller T, Bothe E (2000) Chem Commun 2435–2436

  110. Gilbert BC, Lindsay Smith JR, Mairata i Payeras A, Oakes J, Pons i Prats R (2004) J Mol Catal A: Chem 219:265–272

    Article  CAS  Google Scholar 

  111. Lindsay Smith JR, Gilbert BC, Mairata i Payeras A, Murray J, Lowdon TR, Oakes J, Pons i Prats R, Walton PH (2006) J Mol Catal A: Chem 251:114–122

    Article  CAS  Google Scholar 

  112. Sameera WMC, McGrady JE (2008) Dalton Trans 6141–6149

  113. Kilic H, Adam W, Alsters PL (2009) J Org Chem 74:1135–1140

    Article  CAS  Google Scholar 

  114. Stamatis A, Doutsi P, Vartzouma C, Christoforidis KC, Deligiannakis Y, Louloudi M (2009) J Mol Catal A: Chem 297:44–53

    Article  CAS  Google Scholar 

  115. Lindsay Smith JR, Shul’pin GB (1998) Russ. Chem. Bull. 47:2313–2315

    Article  Google Scholar 

  116. Kirillova MV, Kirillov AM, Mandelli D, Carvalho WA, Pombeiro AJL, Shul’pin GB (2010) J Catal 272:9–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian National Council on Scientific and Technological Development (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, CNPq, Brazil; grants Nos. 552774/2007-3, 478165/2006-4, 305014/2007-2), the State of São Paulo Research Foundation (Fundação de Amparo a Pesquisa do Estado de São Paulo, FAPESP; grant No. 2006/03996-6), and the Russian Foundation for Basic Research (grant No. 06-03-32344-a). L. S. S. and G. B. S. express their gratitude to the CNPq (grants No. 552774/2007-3 and 478165/2006-4), the FAPESP (grants Nos. 2006/03984-8, 2002/08495-4), and the Faculdade de Química, Pontifícia Universidade Católica de Campinas for making it possible for them to visit this University as invited scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgiy B. Shul’pin.

Additional information

This is Part 12 from the series “Oxidations by the system ‘hydrogen peroxide–[Mn2L2O3]2+ (L = 1,4,7-trimethyl-1,4,7-triazacyclononane)–carboxylic acid’”. For parts 1–11, see Refs. 7080, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shul’pin, G.B., Kozlov, Y.N., Shul’pina, L.S. et al. Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catal Lett 138, 193–204 (2010). https://doi.org/10.1007/s10562-010-0398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0398-9

Keywords

Navigation