Skip to main content
Log in

Small Au Nanoparticles Supported on MCM-41 Containing a Surfactant

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) have been incorporated into undoped Si-MCM-41 by direct one-pot and post-synthesis approaches. Through a “modified deposition–precipitation” (mDP) method, whereby ethylenediamine served as both a base and complexing agent for the Au(III) species, Au nanoparticles have been prepared exclusively inside the pore channels of Si-MCM-41 materials. The method exploits Coulombic interactions between the occluded cationic surfactant template and the anionic [AuCl4] to yield a controlled distribution and in-pore generation of AuNPs, i.e., DP of the Au precursor was aided by electrostatics. This method is simple and yields well-dispersed gold nanoparticles (AuNPs). The nanoparticles inside the matrix were seen to aggregate and migrate to the surface upon calcination at 500 °C, but showed a narrow Au particle size distribution. The nanocomposite materials synthesized in this study exhibited catalytic activity for the CO oxidation reaction, with CO conversion of <100% even at temperatures as high as 500 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hutchings GJ (2005) Catal Today 100:55

    Article  CAS  Google Scholar 

  2. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Catal Lett 4:405

    Google Scholar 

  3. Haruta M (2002) CATTECH 6:102

    Article  CAS  Google Scholar 

  4. Haruta M (2003) Chem Record 3:75

    Article  CAS  Google Scholar 

  5. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  6. Bond GC, Thompson DT (2000) Gold Bull 33:41

    CAS  Google Scholar 

  7. Hutchings GJ (1996) Gold Bull 29:123

    CAS  Google Scholar 

  8. Hutchings GJ, Scurrell MS (2003) CATTECH 7:90

    Article  CAS  Google Scholar 

  9. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plazak V, Behm RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  10. Wolf A, Schuth F (2002) Appl Catal A Gen 226:1

    Article  CAS  Google Scholar 

  11. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  12. Jia J, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104:11153

    Article  CAS  Google Scholar 

  13. Liu H, Kozlov AI, Kozlova AP, Shido T, Asakura K, Iwasawa Y (1999) J Catal 185:252

    Article  CAS  Google Scholar 

  14. Bronstein LM (2003) Top Curr Chem 226:55

    Article  CAS  Google Scholar 

  15. Hutchings GJ, Brust M, Schmidbaur H (2008) Chem Soc Rev 37:1759

    Article  CAS  Google Scholar 

  16. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Chem Soc Rev 38:481

    Article  CAS  Google Scholar 

  17. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  18. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTD, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  19. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  20. Taguchi A, Schuth F (2005) Micropor Mesopor Mater 77:1

    Article  CAS  Google Scholar 

  21. Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Catal Lett 51:53

    Article  CAS  Google Scholar 

  22. Lee SJ, Gavriilidis A (2002) J Catal 206:305

    Article  CAS  Google Scholar 

  23. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  24. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  25. Yan WF, Chen B, Mahurin SM, Hagaman EW, Dai S, Overbury SH (2004) J Phys Chem B 108:2793

    Article  CAS  Google Scholar 

  26. Okumura M, Tsubota S, Haruta M (2003) J Mol Catal A 199:73

    Article  CAS  Google Scholar 

  27. Yang CM, Liu PH, Ho YF, Chiu CY, Chao KJ (2002) Chem Mater 15:275

    Article  Google Scholar 

  28. Janssen AH, Yang C-M, Wang Y, Schuth F, Koster AJ, de Jong KP (2003) J Phys Chem B 107:10552

    Article  CAS  Google Scholar 

  29. Yang C-M, Kalwei M, Schuth F, Chao KJ (2003) Appl Catal A Gen 254:289

    Article  CAS  Google Scholar 

  30. Okumura M, Tsubota S, Iwamoto M, Haruta M (1998) Chem Lett 27:315

    Article  Google Scholar 

  31. Chi YS, Lin HP, Mou CY (2005) Appl Catal A Gen 284:199 and references therein

    Article  CAS  Google Scholar 

  32. Penkova A, Martínez Blanes JM, Cruz SA, Centeno MA, Hadjiivanov K, Odriozola JA (2009) Micropor Mesopor Mater 117:530

    Article  CAS  Google Scholar 

  33. Zhu HG, Liang CD, Yan WF, Overbury SH, Dai S (2006) J Phys Chem B 110:10842

    Article  CAS  Google Scholar 

  34. Zhu H, Ma Z, Clark JC, Pan Z, Overbury SH, Dai S (2007) Appl Catal A Gen 326:89

    Article  CAS  Google Scholar 

  35. Guillemot D, Ploisset-Thfoin M, Fraissard J (1996) Catal Lett 41:143

    Article  CAS  Google Scholar 

  36. Guillemot D, Borovkov VY, Kazansky VB, Ploisset-Thfoin M, Fraissard J (1997) J Chem Soc Faraday Trans 93:3587

    Article  CAS  Google Scholar 

  37. Veith GM, Lupini AR, Rashkeev S, Pennycook SJ, Mullins DR, Schwartz V, Bridges CA, Dudney NJ (2009) J Catal 262:92

    Article  CAS  Google Scholar 

  38. Budroni G, Corma A (2006) Angew Chem Int Ed 45:3328

    Article  CAS  Google Scholar 

  39. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  40. Shipway AN, Katz E, Willner I (2000) Chem Phys Chem 1:18

    CAS  Google Scholar 

  41. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Br J Radiol 79:248

    Article  CAS  Google Scholar 

  42. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Arterioscler Thromb Vasc Biol 29:992

    Article  CAS  Google Scholar 

  43. Bond GC, Thompson DT (2006) Appl Catal A Gen 302:1

    Article  CAS  Google Scholar 

  44. Lin H-P, Cheng S, Mou C-Y (1996) J Chin Chem Soc 43:375

    CAS  Google Scholar 

  45. Block BP, Bailar JC Jr (1951) J Am Chem Soc 73:4722

    Article  CAS  Google Scholar 

  46. Golunski SE (2007) Platinum Metals Rev 51:162

    Article  CAS  Google Scholar 

  47. Aguilar-Guerrero V, Gates BC (2009) Catal Lett 130:108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NRF (IRDP) and the NSF USA-South Africa program on Catalysis by Gold, Grant, CTS-0121619. Part of this work was carried out at the University of New Mexico where the reactor studies and HRTEM experiments were carried out. Mangesh Bore and Kelvin Lester (UNM) helped with the HRTEM microanalysis. The University of the North (presently the University of Limpopo) is gratefully acknowledged for granting study leave to M. P. Mokhonoana for PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malose P. Mokhonoana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhonoana, M.P., Coville, N.J. & Datye, A.K. Small Au Nanoparticles Supported on MCM-41 Containing a Surfactant. Catal Lett 135, 1–9 (2010). https://doi.org/10.1007/s10562-010-0300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0300-9

Keywords

Navigation