Skip to main content
Log in

Carbon Nanotube Docking Stations: A New Concept in Catalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The mobility of surface-bound metallic nanoparticles (NPs) on catalyst supports results in agglomeration leading to a subsequent decrease in effectiveness of the catalytic behavior of the metal NPs over time. We report here the synthesis and characterization of a carbon nanotube (CNT) catalyst support system enhanced with ‘docking stations’ along the exterior which limit the surface mobility of ultra small iron catalyst particles on CNT surfaces during Fisher–Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grow RJ (2006) Carbon nanotubes 187

  2. Guldi DM (2007) Nature 447(7140):50

    Article  CAS  Google Scholar 

  3. Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253(2):337

    Article  CAS  Google Scholar 

  4. Balasubramanian K, Burghard M (2005) Small 1(2):180

    Article  CAS  Google Scholar 

  5. Zhang J, Liu X, Blume R, Zhang A, Schloegl R, Su DS (2008) Science 322(5898):73

    Article  CAS  Google Scholar 

  6. Goldsmith BR, Coroneus JG, Khalap VR, Kane AA, Weiss GA, Collins PG (2007) Science 315(5808):77

    Article  CAS  Google Scholar 

  7. Song X, Liu S, Yan H, Gan Z (2008) Electronic components and technology conference ECTC 2008 (58):2091

  8. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J (2007) Microporous Mesoporous Mater 100(1–3):1

    Article  CAS  Google Scholar 

  9. LaBrosse MR, Shi W, Johnson JK (2008) Langmuir 24(17):9430

    Article  CAS  Google Scholar 

  10. Mendoza E, Rodriguez J, Li Y, Zhu YQ, Poa CHP, Henley SJ, Romano-Rodriguez A, Morante JR, Silva SRP (2007) Carbon 45(1):83

    Article  CAS  Google Scholar 

  11. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A Gen 287(1):60

    Article  CAS  Google Scholar 

  12. Bezemer GL, Falke U, van Dillen AJ, de Jong KP (2005) Chem Commun (6):731

  13. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijin JE, Hohannes E, Xu X, Kapteijn F, van Dillen A, de Jong KP (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  14. Pham-Huu C, Ledoux MJ (2006) Top Catal 40(1–4):49

    Article  CAS  Google Scholar 

  15. Zhang J, Su D, Zhang A, Wang D, Schloegl R, Hebert C (2007) Angew Chem Int Edit 46(38):7319

    Article  CAS  Google Scholar 

  16. Davis BH (2007) Ind Eng Chem Res 46(26):8938

    Article  CAS  Google Scholar 

  17. Bahome MC, Jewell LL, Padayachy K, Hildebrandt D, Glasser D, Datye AK, Coville NJ (2007) Appl Catal A Gen 328(2):243

    Article  CAS  Google Scholar 

  18. Bezemer GL, Radstake PB, Falke U, Oosterbeek H, Kuipers HPCE, van Dillen AJ, de Jong KP (2006) J Catal 237(1):152

    Article  CAS  Google Scholar 

  19. Dry ME, Hoogendoorn JC (1981) Catal Rev—Sci Eng 23(2):265

    Article  CAS  Google Scholar 

  20. Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related syntheses. Wiley, New York

    Google Scholar 

  21. Boerrigter H, den Uil H, Calis H-P (2003) Proceedings of an expert meeting, Strasbourg, September 30–October 1 2002, p 371

  22. Chum HL, Overend RP (2001) Fuel Process Technol 71(1–3):187

    Article  CAS  Google Scholar 

  23. Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Biomass Bioenergy 23(2):129

    Article  CAS  Google Scholar 

  24. O’Brien RJ, Xu L, Bao S, Raje A, Davis BH (2000) Appl Catal A Gen 196(2):173

    Article  CAS  Google Scholar 

  25. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128(12):3956

    Article  CAS  Google Scholar 

  26. Chen W, Fan Z, Pan X, Bao X (2008) J Am Chem Soc 130(29):9414

    Article  CAS  Google Scholar 

  27. Jackson SD (2006) Chem Eng J (Amsterdam, Netherlands) 120(1–2):119

    CAS  Google Scholar 

  28. Forzatti P, Lietti L (1999) Catal Today 52(2–3):165

    CAS  Google Scholar 

  29. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mat 6(7):507

    Article  CAS  Google Scholar 

  30. Magrez A, Seo JW, Kuznetsov VL, Forro L (2007) Angew Chem Int Edit 46(3):441

    Article  CAS  Google Scholar 

  31. Ishizuka K, Kimoto K, Bando Y (2003) Microsc Microanal 9(suppl 2):832

    Google Scholar 

  32. Egerton RF (1999) Electron Microsc 48(6):711

    CAS  Google Scholar 

  33. Muller DA, Tzou Y, Raj R, Silcox J (1993) Nature 366(6457):725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, U.M., Dozier, A., Khatri, R.A. et al. Carbon Nanotube Docking Stations: A New Concept in Catalysis. Catal Lett 129, 39–45 (2009). https://doi.org/10.1007/s10562-009-9866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9866-5

Keywords

Navigation