Skip to main content
Log in

Carbon nanotubes supported oxygen reduction reaction catalysts: role of inner tubes

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been widely investigated to develop efficient ORR catalysts. Here we demonstrate that CNTs with 2–7 inner tubes are better supports to develop highly efficient ORR catalysts. Macrocyclic compounds and metal particle loading can dramatically improve the activity for ORR, and the CNTs composed of 2–7 inner tubes functionalized with cobalt phthalocyanine (CoPc) or supported with Pt nanoparticles (NPs) universally demonstrated better activity for ORR, demonstrating that CNTs composed of between 2 and 7 concentric tubes were proved the best supports to develop CNT hybrids for ORR in alkaline condition. The new discovery provides guidance to develop highly efficient catalysts by selecting carbon nanotubes as supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The average OD was abtain from the statistical data according to the TEM micrographs.

References

  1. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51. https://doi.org/10.1038/nature11115

    Article  CAS  Google Scholar 

  2. Chen Z, Higgins D, Yu A, Zhang L, Zhang JJ (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167–3192. https://doi.org/10.1039/c0ee00558d

    Article  CAS  Google Scholar 

  3. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74. https://doi.org/10.1126/science

    Article  Google Scholar 

  4. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416. https://doi.org/10.1038/ncomms1427

    Article  CAS  Google Scholar 

  5. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66. https://doi.org/10.1038/nature05118

    Article  CAS  Google Scholar 

  6. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50:7132–7135. https://doi.org/10.1002/anie.201101287

    Article  CAS  Google Scholar 

  7. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  8. Wang S, Yu D, Dai L (2011) Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J Am Chem Soc 133:5182–5185. https://doi.org/10.1021/ja1112904

    Article  CAS  Google Scholar 

  9. Chen Z, Higgins D, Tao H, Hsu RS, Chen Z (2009) Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J Phys Chem C 113:21008–21013. https://doi.org/10.1021/jp908067v

    Article  CAS  Google Scholar 

  10. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  11. Volder MD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  12. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1385. https://doi.org/10.1021/cr800433k

    Article  CAS  Google Scholar 

  13. Wu J, Xue Y, Yan X, Yan W, Cheng Q, Xie Y (2012) Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530. https://doi.org/10.1007/s12274-012-0237-y

    Article  CAS  Google Scholar 

  14. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Gonzalez BR, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nat Chem 2:826–831. https://doi.org/10.1038/nchem.761

    Article  CAS  Google Scholar 

  15. Toma FM, Sartorel A, Iurlo M, Carraro M, Rapino S, Hoober-Burkhardt L, Da Ros T, Marcaccio M, Scorrano G, Paolucci F, Bonchio M, Prato M (2011) Tailored functionalization of carbon nanotubes for electrocatalytic water splitting and sustainable energy applications. Chemsuschem 4:1447–1451. https://doi.org/10.1002/cssc.201100089

    Article  CAS  Google Scholar 

  16. Rutherglen C, Jain D, Burke P (2009) Nanotube electronics for radiofrequency applications. Nat Nanotech 4:811–819. https://doi.org/10.1038/nnano.2009.355

    Article  CAS  Google Scholar 

  17. Ando T (2009) The electronic properties of graphene and carbon nanotubes. Npg Asia Mater 1:17–21. https://doi.org/10.1038/10.1038/asiamat.2009.1

    Article  Google Scholar 

  18. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455. https://doi.org/10.1021/ja4027715

    Article  CAS  Google Scholar 

  19. Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41:7291–7321. D https://doi.org/10.1039/c2cs35048c

  20. Ye W, Hu H, Zhang H, Zhou F, Liu W (2010) Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis. Appl Surf Sci 256:6723–6728. https://doi.org/10.1016/j.apsusc.2010.04.080

    Article  CAS  Google Scholar 

  21. Lee HY, Vogel W, Chu PPJ (2011) Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes. Langmuir 27:14654–14661. https://doi.org/10.1021/la202169j

    Article  CAS  Google Scholar 

  22. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol, ethanol, glycerol). J Power Sources 190:241–251. https://doi.org/10.1016/j.jpowsour.2009.01.044

    Article  CAS  Google Scholar 

  23. Hu C, Cao Y, Yang L, Bai Z, Guo Y, Wang K, Xu P, Zhou J (2011) Preparation of highly dispersed Pt-SnOx nanoparticles supported on multi-walled carbon nanotubes for methanol oxidation. Appl Surf Sci 257:7968–7974. https://doi.org/10.1016/j.apsusc.2011.04.010

    Article  CAS  Google Scholar 

  24. Wang S, Wang X, Jiang SP (2008) PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir 24:10505–10512. https://doi.org/10.1021/la800925t

    Article  CAS  Google Scholar 

  25. Wang D, Lu S, Jiang SP (2010) Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. Electrochim Acta 55:2964–2971. https://doi.org/10.1016/j.electacta.2010.01.031

    Article  CAS  Google Scholar 

  26. Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135:2013–2036. https://doi.org/10.1021/ja3089923

    Article  CAS  Google Scholar 

  27. Shi Q, Peng F, Liao S, Wang H, Yu H, Liu Z, Zhang B, Su D (2013) Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J Mater Chem A 1:14853–14857. https://doi.org/10.1039/c3ta12647a

    Article  CAS  Google Scholar 

  28. Zhu J, Jiang SP, Wang R, Shi K, Shen PK (2014) One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. J Mater Chem A 2:15448–15453. https://doi.org/10.1039/c4ta02427c

    Article  CAS  Google Scholar 

  29. Miller TS, Macpherson JV, Unwin PR (2014) Electrochemical activation of pristine single walled carbon nanotubes: impact on oxygen reduction and other surface sensitive redox processes. Phys Chem Chem Phys 16:9966–9973. https://doi.org/10.1039/c3cp53717j

    Article  CAS  Google Scholar 

  30. Waki K, Wong RA, Oktaviano HS, Fujio T, Nagai T, Kimoto K, Yamada K (2014) Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: mechanism and origin of ORR activity. Energy Environ Sci 7:1950–1958. https://doi.org/10.1039/c3ee43743d

    Article  CAS  Google Scholar 

  31. Cheng Y, Memar A, Saunders M, Pan J, Liu C, Gale JD, Demichelis R, Shen PK, Jiang SP (2016) Dye functionalized carbon nanotubes for photoelectrochemical water splitting-role of inner tubes. J Mater Chem A 4:2473–2483. https://doi.org/10.1039/C6TA00143B

    Article  CAS  Google Scholar 

  32. Cheng Y, Zhang J, Jiang SP (2015) Are metal-free pristine carbon nanotubes electrocatalytically active? Chem Comm 51:13764–13767. https://doi.org/10.1039/C5CC02218E

    Article  CAS  Google Scholar 

  33. Yuan W, Cheng Y, Shen PK, Li CM, Jiang SP (2015) Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. J Mater Chem A 3:1961–1971. https://doi.org/10.1039/C4TA04613G

    Article  CAS  Google Scholar 

  34. Liu Y, Zhang J, Cheng Y, Jiang SP (2018) Effect of carbon nanotubes on direct electron transfer and electrocatalytic activity of immobilized glucose oxidase. ACS Omega 3:667–676. https://doi.org/10.1021/acsomega

    Article  CAS  Google Scholar 

  35. Cheng Y, Xu C, Jia L, Gale JD, Zhang L, Liu C, Shen PK, Jiang SP (2015) Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Appl Catal B Environ 163:96–104. https://doi.org/10.1016/j.apcatb.2014.07.049

    Article  CAS  Google Scholar 

  36. Zhang J, Cheng Y, Lu S, Jia L, Shen PK, Jiang SP (2014) Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes. Chem Commun 50:13732–13734. https://doi.org/10.1039/c4cc06185c

    Article  CAS  Google Scholar 

  37. Cheng Y, Jiang SP (2013) Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells. Electrochim Acta 99:124–132. https://doi.org/10.1016/j.electacta.2013.03.081

    Article  CAS  Google Scholar 

  38. Tackley DR, Dent G, Ewen Smith W (2000) IR and Raman assignments for zinc phthalocyanine from DFT calculations. Phys Chem Chem Phys 2:3949–3955. https://doi.org/10.1039/b005091l

    Article  Google Scholar 

  39. Murray C, Dozova N, McCaffrey JG, FitzGerald S, Shafizadeh N, Crepin C (2010) Infra-red and Raman spectroscopy of free-base and zinc phthalocyanines isolated in matrices. Phys Chem Chem Phys 12:10406–10422. https://doi.org/10.1039/c0cp00055h

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key R&D project of Hubei Province, China (2021AAA006), the National Natural Science Foundation of China (51976143) and the Guangdong Key Areas Research and Development Program (2020B090904001 and 2019B090909003).

Author information

Authors and Affiliations

Authors

Contributions

Tian Tian and Yi Cheng wrote the main manuscript text, Zhenfan Sun and Kai Huang prepared figures 1-8, Ming Lei and Haolin Tang edited the manuscript. All authors reviewed the manuscript."

Corresponding authors

Correspondence to Ming Lei or Haolin Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Cheng, Y., Sun, Z. et al. Carbon nanotubes supported oxygen reduction reaction catalysts: role of inner tubes. Adv Compos Hybrid Mater 6, 7 (2023). https://doi.org/10.1007/s42114-022-00592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00592-2

Keywords

Navigation