Skip to main content

Advertisement

Log in

Redox Properties and Catalytic Oxidation Activities of Polyatom-Substituted H n PW11M1O40 (M = V, Nb, Ta, and W) Keggin Heteropolyacid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Redox properties and catalytic oxidation activities of polyatom-substituted H n PW11M1O40 (M = V, Nb, Ta, and W) Keggin heteropolyacids (HPAs) were examined. Reduction potentials and UV–visible absorption edge energies of H n PW11M1O40 (M = V, Nb, Ta, and W) HPA catalysts in solution were determined by an electrochemical method and UV–visible spectroscopy measurements, respectively. It was observed that reduction potentials of H n PW11M1O40 (M = V, Nb, Ta, and W) HPA catalysts increased and UV–visible absorption edge energies of the HPA catalysts decreased with decreasing electronegativity of substituted polyatom. It was also found that the lower absorption edge energy corresponded to the higher reduction potential of the HPA catalyst. Vapor-phase oxidation of benzyl alcohol was carried out as a model reaction to probe the redox properties of H n PW11M1O40 (M = V, Nb, Ta, and W) HPA catalysts. Yield for benzaldehyde increased with increasing reduction potential and with decreasing absorption edge energy of the HPA catalyst, and in turn, with decreasing electronegativity of substituted polyatom. Reduction potential of H n PW11M1O40 (M = V, Nb, Ta, and W) HPA catalysts measured by an electrochemical method and absorption edge energy of the HPA catalysts measured by UV–visible spectroscopy could be utilized as a probe of oxidation catalysis of the HPA catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pope MT, Müller A (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer, Dordrecht

    Google Scholar 

  2. Keggin JF (1933) Nature 131:908–909

    Article  CAS  Google Scholar 

  3. Hill CL, Prosser-McCartha CM (1995) Coord Chem Rev 143:407–455

    Article  CAS  Google Scholar 

  4. Kozhevnikov IV (1998) Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  5. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  6. Mori H, Mizuno N, Misono M (1991) J Catal 131:133–142

    Article  CAS  Google Scholar 

  7. Lim SS, Kim YH, Park GI, Lee WY, Song IK, Youn HK (1999) Catal Lett 60:199–204

    Article  CAS  Google Scholar 

  8. Ai M (1981) J Catal 71:88–98

    Article  Google Scholar 

  9. Kozhevnikov IV (1995) Catal Rev Sci Eng 37:311–352

    Article  CAS  Google Scholar 

  10. Song IK, Barteau MA (2002) Korean J Chem Eng 19:567–573

    Article  CAS  Google Scholar 

  11. Misono M (1987) Catal Rev Sci Eng 29:269–321

    Article  CAS  Google Scholar 

  12. Weber RS (1994) J Phys Chem 98:2999–3005

    Article  CAS  Google Scholar 

  13. Eguchi K, Seiyama T, Yamazoe N, Katsuki S, Taketa H (1988) J Catal 111:336–344

    Article  CAS  Google Scholar 

  14. Kinne M, Barteau MA (2000) Surf Sci 447:105–111

    Article  CAS  Google Scholar 

  15. Kaba MS, Song IK, Barteau MA (1996) J Phys Chem 100:19577–19581

    Article  CAS  Google Scholar 

  16. Song IK, Shnitser RB, Cowan JJ, Hill CL, Barteau MA (2002) Inorg Chem 41:1292–1298

    Article  CAS  Google Scholar 

  17. Song IK, Barteau MA (2004) Langmuir 20:1850–1855

    Article  CAS  Google Scholar 

  18. Altenau JJ, Pope MT, Prados RA, So H (1975) Inorg Chem 14:417–421

    Article  CAS  Google Scholar 

  19. Kozhevnikov IV (2002) Catalysts for fine chemical synthesis. Wiley, West Sussex

    Google Scholar 

  20. Keita B, Nadjo L (1989) Mater Chem Phys 22:77–103

    Article  CAS  Google Scholar 

  21. Grigoriev VA, Hill CL, Weinstock IA (2000) J Am Chem Soc 122:3544–3545

    Article  CAS  Google Scholar 

  22. Sadakane M, Steckhan E (1998) Chem Rev 98:219–238

    Article  CAS  Google Scholar 

  23. Barteau KP, Lyons JE, Song IK, Barteau MA (2006) Topics Catal 41:55–62

    Article  CAS  Google Scholar 

  24. Yamase T (1998) Chem Rev 98:307–326

    Article  CAS  Google Scholar 

  25. Youn MH, Kim H, Jung JC, Song IK, Barteau KP, Barteau MA (2005) J Mol Catal A 241:227–232

    Article  CAS  Google Scholar 

  26. Casarini D, Centi G, Jiru P, Lena V, Tvaruzkova Z (1993) J Catal 143:325–344

    Article  CAS  Google Scholar 

  27. Seki Y, Mizuno N, Misono M (2000) Appl Catal A 194–195:13–20

    Google Scholar 

  28. Lee JK, Melsheimer J, Berndt S, Mestl G, Schlögl R, Köhler K (2001) Appl Catal A 214:125–148

    Article  CAS  Google Scholar 

  29. Shinachi S, Matsushita M, Yamaguchi K, Mizuno N (2005) J Catal 233:81–89

    Article  CAS  Google Scholar 

  30. Ali BE, El-Ghanam AM, Fettouhi M (2001) J Mol Catal A 165:283–290

    Article  Google Scholar 

  31. Akimoto M, Tsuchida Y, Sato K, Echigoya E (1981) J Catal 72:83–94

    Article  CAS  Google Scholar 

  32. Konishi Y, Sakata K, Misono M, Yoneda Y (1982) J Catal 77:169–179

    Article  CAS  Google Scholar 

  33. Serwicka EM, Broclawik E, Brückman K, Haber J (1989) Catal Lett 2:351–360

    Article  CAS  Google Scholar 

  34. Ai M (1984) J Catal 85:324–330

    Article  CAS  Google Scholar 

  35. Centi G, Nieto JL, Iapalucci C, Brückman K, Serwicka EM (1989) Appl Catal 46:197–212

    Article  CAS  Google Scholar 

  36. Tsigdinos GA, Hallada CJ (1968) Inorg Chem 7:437–441

    Article  CAS  Google Scholar 

  37. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, New York

    Google Scholar 

  38. Wu H (1920) J Biol Chem 43:189–220

    CAS  Google Scholar 

  39. Okumura K, Yamashita K, Yamada K, Niwa M (2007) J Catal 245:75–83

    Article  CAS  Google Scholar 

  40. Kubelka P, Munk F (1931) Z Tech Phys 12:593–601

    Google Scholar 

  41. Massart R, Contant R, Fruchart JM, Ciabrini JP, Fournier M (1977) Inorg Chem 16:2916–2921

    Article  CAS  Google Scholar 

  42. O’Donnell SE, Pope MT (1976) J Chem Soc Dalton Trans 2290–2297

  43. Pope MT, Varga GM Jr (1966) Inorg Chem 5:1249–1254

    Article  CAS  Google Scholar 

  44. Tanaka K, Ozaki A (1967) J Catal 8:1–7

    Article  CAS  Google Scholar 

  45. Taketa H, Katsuki S, Eguchi K, Seiyama T, Yamazoe N (1986) J Phys Chem 90:2959–2962

    Article  CAS  Google Scholar 

  46. Lingaiah N, Reddy KM, Babu NS, Rao KN, Suryanarayana I, Prasad PSS (2006) Catal Commun 7:245–250

    Article  CAS  Google Scholar 

  47. Yadav GD, Mistry CK (2001) J Mol Catal A 172:135–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2009-0078115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D.R., Song, S.H., Hong, U.G. et al. Redox Properties and Catalytic Oxidation Activities of Polyatom-Substituted H n PW11M1O40 (M = V, Nb, Ta, and W) Keggin Heteropolyacid Catalysts. Catal Lett 132, 363–369 (2009). https://doi.org/10.1007/s10562-009-0114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0114-9

Keywords

Navigation