Skip to main content
Log in

Bimetallic Cobalt/Rhenium Systems: Preferred Position of Rhenium Through an Interdisciplinary Approach

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Some commercial type Fischer–Tropsch catalysts are based on rhenium-doped cobalt. In an attempt to elucidate the preferred position of rhenium in the cobalt matrix, we have carried out experimental Low Energy Ion Scattering investigations of oxidized and reduced catalyst samples and computational DFT investigations of bimetallic Co/Re clusters. The results indicate that rhenium preferentially occupies subsurface sites, where it can coordinate to a maximum number of cobalt atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a more general view see [10].

References

  1. Schanke D, Rytter E, Jaer FO (2004) Stud Surf Sci Catal 147:43

    Article  CAS  Google Scholar 

  2. Fischer VF, Tropsch H (1926) Brennst Chem 7:97

    CAS  Google Scholar 

  3. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  4. Niemantsverdriet JW (2007) Spectroscopy in catalysis, 3rd edn. Wiley-VCH, Weinheim (ISBN 3-527-31651-5)

  5. Jacobs G, Chaney JA, Patterson PM, Das TK, Davis BH (2004) Appl Catal A 264:203

    Article  CAS  Google Scholar 

  6. Guczi L, Bazin D, Kovács I, Borkó L, Schay Z, Lynch J, Parent P, Lafon C, Stefler G, Koppány Zs, Sajó I (2002) Topics Catal 20:129

    Article  CAS  Google Scholar 

  7. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  8. Ruban AV, Skriver HL, Norskov JK (1999) Phys Rev B 59:15990

    Article  Google Scholar 

  9. Pacchioni G (1995) Heterog Chem Rev 2:213

    CAS  Google Scholar 

  10. Hoffmann R (1987) Angew Chem Int Ed Engl 26:846

    Article  Google Scholar 

  11. Knickelbein MB (1999) Annu Rev Phys Chem 50:79

    Article  CAS  Google Scholar 

  12. Fossan KO, Uggerud E (2004) Dalton Trans 892

  13. Ford MS, Anderson ML, Barrow MP, Woodruff DP, Drewello T, Derrick PJ, Mackenzie SR (2005) Phys Chem Chem Phys 7:975

    Article  CAS  Google Scholar 

  14. Armentrout PB (2001) Annu Rev Phys Chem 52:423

    Article  CAS  Google Scholar 

  15. Sergeev GB (2003) J Nanoparticle Res 5:529

    Article  CAS  Google Scholar 

  16. Klotzbucher WE, Petrukhina MA, Nemukhin AV, Ermilov AY, Grigorenko BL (2001) Spectrochim Acta A 57:1093

    Article  Google Scholar 

  17. Joshi AM, Tucker MH, Delgass WN, Thomson KT (2006) J Chem Phys 125:194707

    Article  Google Scholar 

  18. Futschek T, Hafner J, Marsman M (2006) J Phys Condens Matter 18:9703

    Article  CAS  Google Scholar 

  19. Jigato MP, Somasundram K, Termath V, Handy NC, King DA (1997) Surf Sci 380:83

    Article  Google Scholar 

  20. Mattsson A, Panas I, Siegbahn P, Wahlgren U, Åkeby H (1987) Phys Rev B 36:7389

    Article  CAS  Google Scholar 

  21. Swang O, Faegri K Jr, Gropen O, Wahlgren U, Siegbahn P (1991) Chem Phys 156:379 (and references therein)

    Article  CAS  Google Scholar 

  22. Swang O, Faegri K Jr, Gropen O, Wahlgren U (1996) Int J Quantum Chem 57:105

    Article  CAS  Google Scholar 

  23. Fan HJ, Liu CW, Liao MS (1997) Chem Phys Lett 273:353

    Article  CAS  Google Scholar 

  24. Mlynarski P, Iglesias M, Pereiro M, Baldomir D, Wojtczak L (1999) Vacuum 54:143

    Article  CAS  Google Scholar 

  25. Papas BN, Schaefer HF (2005) J Chem Phys 123:074321

    Article  Google Scholar 

  26. Brongersma HH, Mul PM (1972) Chem Phys Lett 14:380

    Article  CAS  Google Scholar 

  27. Taglauer E (1994) Surf Sci 299:64

    Article  Google Scholar 

  28. Jansen WPA, Ruitenbeek K, von der Gon AWD, Geus JW, Brongersma HH (2000) J Catal 196:379

    Article  CAS  Google Scholar 

  29. Kohl A, Labich S, Taglauer E, Knözinger H (2000) Surf Sci 454:974

    Article  Google Scholar 

  30. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  31. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  CAS  Google Scholar 

  32. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391

    Article  Google Scholar 

  33. ADF2005.01, SCM. Theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands

  34. van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Unni Olsbye for valuable discussions. Thanks are due to Arie Knoester for running the LEIS experiment. A generous grant of computer time from the Norwegian Research Council (NOTUR project, account No. NN2923K, http://www.notur.no), and a research grant from Statoil are both gratefully acknowledged. V.B. wishes to thank the VISTA foundation (http://www.vista.no) for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Swang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakken, V., Bergene, E., Rytter, E. et al. Bimetallic Cobalt/Rhenium Systems: Preferred Position of Rhenium Through an Interdisciplinary Approach. Catal Lett 135, 21–25 (2010). https://doi.org/10.1007/s10562-009-0089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0089-6

Keywords

Navigation