Skip to main content

Advertisement

Log in

Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The greatest influence of nickel, cobalt and manganese modifiers of CuZn-based catalyst is observed at low temperatures of the ethanol steam reforming. Below 480 °C the most advantageous effects are: a decrease in the methane formation and an increase in the hydrogen selectivity, yield and its productivity. At 480 °C the formation of organic by-products (methane excluding) is almost completely depressed. However, significant lowering in the methane selectivity and a high production of hydrogen require higher temperatures of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Subramani V, Song C (2007) Catalysis 20:65 and references cited therein

    Article  CAS  Google Scholar 

  2. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrog Energy 32:3238 and references cited therein

    Article  CAS  Google Scholar 

  3. Frusteri F, Freni S (2007) J Power Sources 173:200 and references cited therein

    Article  CAS  Google Scholar 

  4. Piscina PR, Homs N (2006) In: Minteer S (ed) Alcoholic fuels. Taylor & Francis, Boca Raton, pp 233–248 and references cited therein

    Google Scholar 

  5. Machocki A (2006) Przem Chem 85:1045 and references cited therein

    CAS  Google Scholar 

  6. Cheekatamarla PK, Finnerty CM (2006) J Power Sources 160:490 and references cited therein

    Article  CAS  Google Scholar 

  7. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39 and references cited therein

    Article  CAS  Google Scholar 

  8. Joensen F, Rostrup-Nielsen JR (2002) J Power Sources 105:195 and references cited therein

    Article  CAS  Google Scholar 

  9. Wang JB, Li C-H, Huang T-J (2005) Catal Lett 103:239

    Article  CAS  Google Scholar 

  10. Zhang X-R, Wang L-C, Yao C-Z, Cao Y, Dai W-L, He H-Y, Fan K-N (2005) Catal Lett 102:183

    Article  CAS  Google Scholar 

  11. Lee JK, Ko JB, Kim DH (2004) Appl Catal A 278:25

    Article  CAS  Google Scholar 

  12. Shen J-P, Song CH (2002) Catal Today 77:89

    Article  CAS  Google Scholar 

  13. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Appl Catal A 179:21

    Article  CAS  Google Scholar 

  14. Youn MH, Seo JG, Kim P, Kim JJ, Lee H-I, Song IK (2006) J Power Sources 162:1270

    Article  CAS  Google Scholar 

  15. Homs N, Llorca J, Piscina PR (2006) Catal Today 116:361

    Article  CAS  Google Scholar 

  16. Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CHS (2005) Appl Catal B 55:287

    Article  CAS  Google Scholar 

  17. Marino F, Boveri M, Baronetti G, Laborde M (2004) Int J Hydrog Energy 29:67

    Article  CAS  Google Scholar 

  18. Marino F, Baronetti G, Jobbagy M, Laborde M (2003) Appl Catal A 238:41

    Article  CAS  Google Scholar 

  19. Velu S, Satoh N, Gopinath ChS, Suzuki K (2002) Catal Lett 82:145

    Article  CAS  Google Scholar 

  20. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sources 105:26

    Article  CAS  Google Scholar 

  21. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrog Energy 26:665

    Article  CAS  Google Scholar 

  22. Llorca J, Homs N, Rossell O, Seco M, Fierro J-LG, Piscina PR (1999) J Mol Catal A 149:225

    Article  CAS  Google Scholar 

  23. Marino FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA (1998) Int J Hydrog Energy 23:1095

    Article  CAS  Google Scholar 

  24. Torres JA, Llorca J, Casanovas A, Dominguez M, Salvado J, Montane D (2007) J Power Sources 169:158

    Article  CAS  Google Scholar 

  25. Papavasiliou J, Avgouropoulos G, Ioannides T (2005) Catal Commun 6:497

    Article  CAS  Google Scholar 

  26. Qi A, Peppley B, Karan K (2007) Fuel Process Technol 88:3 and references cited therein

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Ministry of Science and Higher Education of Poland and the General Secretariat for Research and Technology of Greece in the frame of the Polish-Greek Scientific and Technological Programme. We also acknowledge financial support from the Ministry of Science and Higher Education of Poland, in the frame of the Research Project No. N N204 228534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Machocki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzegorczyk, W., Denis, A., Gac, W. et al. Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese. Catal Lett 128, 443–448 (2009). https://doi.org/10.1007/s10562-008-9771-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9771-3

Keywords

Navigation