Skip to main content
Log in

Vanadium Oxide Based Nanostructured Materials: Novel Oxidative Dehydrogenation Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Novel vanadium oxide based catalyst derived from the open-framework solid, [Co3V18O42(H2O)12(XO4)]·24 H2O (X = V, S) (1) catalyses oxidative dehydrogenation of propane to propylene. Catalyst activity was evaluated in the temperature range 250–400 °C with varying gas hourly space velocity (GHSV). At 350 °C and GHSV of 9786 h−1 and at 1.3% propane conversion the selectivity to propylene was 36.8%. The major products obtained were propylene and CO x (CO2 and CO). The ratio of the propylene to CO x depended directly on the catalytic sites present. Thus, as the amount of the catalyst was decreased, the conversion decreased with an increase in the propylene selectivity and a decrease in the selectivity to carbon oxides—CO x . The catalyst has been characterized by temperature programmed reduction and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. While as prepared catalyst material is highly crystalline with a well-defined XRD pattern and resolved crystal structure, the catalyst loses its crystallinity upon heating as evidenced by the broad peaks in the X-ray powder diffraction patterns of the pretreated (at 350 and 450 °C) catalyst as well as the catalyst recovered after the catalyst testing experiments. Thus, DRIFTS provides an insight of structural changes in the catalyst framework following pretreatment and ODH catalysis experiments.

References

  1. Courtine P, Bordes E (1997) Appl Catal A: Gen 157:45

    Article  CAS  Google Scholar 

  2. Centi G, Trifirò F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55

    Article  CAS  Google Scholar 

  3. Blasco T, Lopez Nieto JM (1997) Appl Catal A: Gen 157:117

    Article  CAS  Google Scholar 

  4. Cavani F, Trifirò F (1999) Catal Today 51:561

    Article  CAS  Google Scholar 

  5. Mamedov EA, Corberán Cortés V (1995) Appl Catal A: Gen 127:1

    Article  CAS  Google Scholar 

  6. Kung HH, Kung MC (1997) Appl Catal A: Gen 157:105

    Article  CAS  Google Scholar 

  7. Kung MC, Kung HH (1992) J Catal 134:668

    Article  CAS  Google Scholar 

  8. Corma A, LopezNieto JM, Paredes N (1993) J Catal 144:425

    Article  CAS  Google Scholar 

  9. Guttmann AT, Grasselli RK, Brazdil JF (1998) US Patent 4,746,641

  10. Cavani F, Centi G, Trifirò F, Grasselli RK (1998) Catal Today 3:185

    Article  Google Scholar 

  11. Catani R, Centi G, Trifirò F, Grasselli RK (1992) Ind Eng Chem Res 31:107

    Article  CAS  Google Scholar 

  12. Andersson A, Andersson SLT, Centi G, Grasselli RK, Sanati M, Trifirò F, In: L. Guczi, F. Solymosi, and P. Tetenyi (eds) (1993) Proceedings, 10th International, Congress on Catalysis, Budapest, 1992. Akad′emiai kiad ′ o, Budapest, 1993

  13. Andersson A, Andersson SLT, Centi G, Grasselli RK, Santi M, Trifirò F (1994) Appl Catal A 113:43

    Article  CAS  Google Scholar 

  14. Kim YC, Ueda W, Moro-oka Y (1992) Catal Today 13:673

    Article  CAS  Google Scholar 

  15. Oshima K, Kayo A, Umezawa T, Kiyono K, Sawaki I (1992) European Patent 21,529,853

  16. Bartek JP, Ebner M, Brazdil JF (1993) US Patent 5,198,580

  17. Ai M (1992) Catal Today 12:679

    Article  Google Scholar 

  18. Ai M (1986) J Catal 101:389

    Article  CAS  Google Scholar 

  19. Watson RB, Ozkan US (2000) J Catal 191:12

    Article  CAS  Google Scholar 

  20. Jarupatrakorn J, Tilley TD (2002) J Am Chem Soc 124:8380

    Article  CAS  Google Scholar 

  21. Mazzochia C, Aboumrad D, Diage C, Tempesti E, Herrmann JM, Thomas G (1991) Catal Lett 10:181

    Article  Google Scholar 

  22. Chaar M, Patel D, Kung M, Kung HH (1988) J Catal 109:463

    Article  CAS  Google Scholar 

  23. Smits RHH, Seshan K, Leemreize H, Ross JRH (1993) Catal Today 16:513

    Article  CAS  Google Scholar 

  24. Yoon YS, Ueda W, Moro-oka Y (1996) Top Catal 3:265

    Article  CAS  Google Scholar 

  25. Cavani F, Trifirò F (1995) Catal Today 24:307

    Article  CAS  Google Scholar 

  26. Centi G, Trifirò F (1996) Appl Catal A 143:3

    Article  CAS  Google Scholar 

  27. Craig HL (2007) J Mol Catal A: Chem 262:2

    Article  Google Scholar 

  28. Misono M (1987) Catal Rev Sci Eng 29:269

    Article  CAS  Google Scholar 

  29. Al-Zahrani SM, Jibril BY, Abasaeed AE (2001) J Mol Catal A: Chem 175:259

    Article  CAS  Google Scholar 

  30. Bardin BB, Davis RJ (1999) Appl Catal A: Gen 185:283

    Article  CAS  Google Scholar 

  31. Dimitratos N, Védrine JC (2003) Catal Today 81:561

    Article  CAS  Google Scholar 

  32. Khan MI (2000) J Solid State Chem 152:105

    Article  CAS  Google Scholar 

  33. Khan MI, Yohannes E, Doedens RJ (1999) Angew Chem Int Ed Engl 38:1292

    Article  CAS  Google Scholar 

  34. Khan MI, Hope T, Tabussum S (1999) Solid State Sci 1:163

    Article  CAS  Google Scholar 

  35. Khan MI, Yohannes E, Powell D (1999) Inorg Chem 38:212

    Article  CAS  Google Scholar 

  36. Khan MI, Cevik S, Doedens RJ in:Yamase T, Pope MT (eds) (2002) Polyoxometalate chemistry for nanocomposite design. Kluwer Academic Publishers, New York

  37. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463

    Article  CAS  Google Scholar 

  38. Siew Hew Sam D, Soenen V, Volta JC (1990) J Catal 123:417

    Article  Google Scholar 

  39. Eon JG, Olier R, Volta JC (1994) J Catal 145:318

    Article  CAS  Google Scholar 

  40. Colorio G, Védrine JC, Auroux A, Bonnetot B (1996) Appl Catal A 137:55

    Article  CAS  Google Scholar 

  41. Blasco T, Lopez Nieto JM (1997) Appl Catal A 157:117

    Article  CAS  Google Scholar 

  42. Owen OS, Kung HH (1993) J Mol Catal 79:265

    Article  CAS  Google Scholar 

  43. Chaar MD, Patel D, Kung MC, Kung HH (1987) J Catal 105:483

    Article  CAS  Google Scholar 

  44. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205

    Article  CAS  Google Scholar 

  45. Argyle MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139

    Article  CAS  Google Scholar 

  46. Wang H, Ye JL, Liu Y, Li YD, Qin YN (2007) Catal Today 129:305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ishaque Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishaque Khan, M., Deb, S. & Marshall, C.L. Vanadium Oxide Based Nanostructured Materials: Novel Oxidative Dehydrogenation Catalysts. Catal Lett 128, 256–262 (2009). https://doi.org/10.1007/s10562-008-9701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9701-4

Keywords

Navigation