Skip to main content
Log in

Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen over Pyridine-modified Vanadium-substituted Heteropoly Acids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pyridine(Py)-modified Keggin-type mono-vanadium-substituted heteropoly acids (Py n PMo11V, n = 1–4) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were characterized by FT-IR. Among various catalysts, Py4PMo11V exhibited the highest catalytic activity (yield of phenol 9.0%) with the high selectivity for phenol, without observing the formation of catechol, hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid, molecular oxygen and ascorbic acid used as the solvent, oxidant and reducing reagent, respectively. The influences of the reaction temperature, the pressure of oxygen, the amount of ascorbic acid, the amount of catalyst, and the reaction time on the yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation. Pyridine can greatly promote the catalytic activity of the Py-free catalyst (H4PMo11VO40), mostly because the organic π electrons in the hydrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and thus dramatically modify the redox properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng ST, Yuan DQ, Zhang J, Yang GY (2007) Inorg Chem 46:4569

    Article  CAS  Google Scholar 

  2. Zhao JW, Li B, Zheng ST, Yang GY (2007) Cryst Growth Des 7:2658

    Article  CAS  Google Scholar 

  3. Liu YY, Murata K, Inaba M (2005) Catal Commun 6:679

    Article  CAS  Google Scholar 

  4. Bardin BB, Davis RJ (1999) Appl Catal A Gen 185:283

    Article  CAS  Google Scholar 

  5. Zhang FM, Yuan CS, Wang J, Zhu HY, Wang CY (2006) J Mol Catal A Chem 247:130

    Article  CAS  Google Scholar 

  6. Zhang FM, Wang J, Yuan CS, Ren XQ (2005) Catal Lett 102:171

    Article  CAS  Google Scholar 

  7. Yang YY, Xu L, Gao GG, Li FY, Qiu YF, Qu XS, Liu H (2007) Eur J Inorg Chem 2500

  8. Zhang FQ, Zhang XM, Wu HS, Jiao HJ (2007) J Phys Chem A 111:159

    Article  CAS  Google Scholar 

  9. San Felices L, Vitoria P, Gutierrez-Zorrilla JM, Lezama L, Reinoso S (2006) Inorg Chem 45:7748

    Article  CAS  Google Scholar 

  10. Saha PK, Dutta B, Jana S, Bera R, Saha S, Okamoto K, Koner S (2007) Polyhedron 26:563

    Article  CAS  Google Scholar 

  11. Bigi F, Corradini A, Quarantelli C, Sartori G (2007) J Catal 250:222

    Article  CAS  Google Scholar 

  12. Neumann R, Khenkin AM (2006) Chem Commun 2529

  13. San Felices L, Vitoria P, Gutierrez-Zorrilla JM, Reinoso S, Etxebarria J, Lezama L (2004) Chem Eur J 10:5138

    Article  CAS  Google Scholar 

  14. Xu BB, Peng ZH, Wei YG, Powell DR (2003) Chem Commun 2562

  15. Lu M, Wei YG, Xu BB, Cheung CFC, Peng ZH, Powell DR (2002) Angew Chem Int Ed 41:1566

    Article  CAS  Google Scholar 

  16. Lemke K, Ehrich H, Lohse U, Berndt H, Jahnisch K (2003) Appl Catal A Gen 243:41

    Article  CAS  Google Scholar 

  17. Niwa S, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F (2002) Science 295:105

    Article  CAS  Google Scholar 

  18. Gu YY, Zhao XH, Zhang GR, Ding HM, Shan YK (2007) Appl Catal A Gen 328:150

    Article  CAS  Google Scholar 

  19. Mishra GS, Kumar A (2002) Catal Lett 81:113

    Article  CAS  Google Scholar 

  20. Laufer W, Niederer JPM, Hoelderich WF (2002) Adv Synth Catal 344:1084

    Article  CAS  Google Scholar 

  21. Li Y, Xia HA, Fan FT, Feng ZC, van Santen RA, Hensen EJM, Li C (2008) Chem Commun 774

  22. Zhong YK, Li GY, Zhu LF, Yan Y, Wu G, Hu CW (2007) J Mol Catal A Chem 272:169

    Article  CAS  Google Scholar 

  23. Lee CH, Lin TS, Mou CY (2007) J Phys Chem C 111:3873

    Article  CAS  Google Scholar 

  24. Kubacka A, Wang ZL, Sulikowski B, Corberan VC (2007) J Catal 250:184

    Article  CAS  Google Scholar 

  25. Liu YY, Murata K, Inaba M (2006) J Mol Catal A Chem 256:247

    Article  CAS  Google Scholar 

  26. Zhang FM, Guo MP, Ge HQ, Wang J (2007) Chin J Chem Eng 15:4

    Google Scholar 

  27. Ge HQ, Leng Y, Zhou CJ, Wang J (2008) Catal Lett. doi:10.1007/s10562-008-9464-y

  28. Takahashi K, Okuhara T, Misono M (1985) Chem Lett 841

  29. Misono M, Okuhara T, Ichiki T, Arai T, Kanda Y (1987) J Am Chem Soc 109:5535

    Article  CAS  Google Scholar 

  30. Misono M (1987) Catal Rev Sci Eng 29:269

    Article  CAS  Google Scholar 

  31. Wang J, Lin Z, Han SY, Eum M, Lee CW (2003) J Ind Eng Chem 9:281

    CAS  Google Scholar 

  32. Li W, Oshihara K, Ueda W (1999) Appl Catal A Gen 182:357

    Article  CAS  Google Scholar 

  33. Song IK, Kaba MS, Barteau MA (1996) J Phys Chem 100:17528

    Article  CAS  Google Scholar 

  34. Ishida MA, Masumoto Y, Hamada R, Nishiyama S, Tsuruya S, Masai M (1999) J Chem Soc Perkin Trans 2:847

    Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Science Foundation of China (Nos. 20306011 and 20476046) and the “Qinglan” Project of Jiangsu Province for Young Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, H., Leng, Y., Zhang, F. et al. Direct Hydroxylation of Benzene to Phenol with Molecular Oxygen over Pyridine-modified Vanadium-substituted Heteropoly Acids. Catal Lett 124, 250–255 (2008). https://doi.org/10.1007/s10562-008-9506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9506-5

Keywords

Navigation