Skip to main content
Log in

Selective Reduction of NO with CO Over Titania Supported Transition Metal Oxide Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of transition metal oxides promoted titania catalysts (MO x /TiO2; M = Cr, Mn, Fe, Ni, Cu) were prepared by wet impregnation method using dilute solutions of metal nitrate precursors. The catalytic activity of these materials was evaluated for the selective catalytic reduction (SCR) of NO with CO as reductant in the presence of excess oxygen (2 vol.%). Among various promoted oxides, the MnO x /TiO2 system showed very promising catalytic activity for NO + CO reaction, giving higher than 90% NO conversion over a wide temperature window and at high space velocity (GHSV) of 50,000 h−1. It is remarkable to note that the catalytic activity increased with oxygen, up to 4 vol.%, under these conditions leading primarily to nitrogen. Our TPR studies revealed the presence of mixed oxidation states of manganese on the catalyst surface. Characterization results indicated that the surface manganese oxide phase and the redox properties of the catalyst play an important role in final catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B: Environmental 18:1

    Article  CAS  Google Scholar 

  2. Hamada H (1994) Catal Today 22:21

    Article  CAS  Google Scholar 

  3. Novakova J, Kubelkova L (1997) Appl Catal B 14:273

    Article  CAS  Google Scholar 

  4. Chuang SSC, Tan CD (1998) J Catal 173:95

    Article  CAS  Google Scholar 

  5. Haneda M, Fujitani T, Hamada H (2006) J Mol Catal A 256:143

    Article  CAS  Google Scholar 

  6. He H, Liu M, Dai H, Qiu W, Zi X (2007) Catal Today 126:290

    Article  CAS  Google Scholar 

  7. Forni L, Oliva C, Brazetti T, Selli E, Ezerets AM, Vishniakov AV (1997) Appl Catal B 13:35

    Article  CAS  Google Scholar 

  8. Amano F, Suzuki S, Yamamoto T, Tanaka T (2006) Appl Catal B 64:282

    Article  CAS  Google Scholar 

  9. Nohman AKH, Duprez D, Kappenstein C, Mansour SAA, Zaki MI (1991) In: Delmon B, Jacobs PA, Poncelet G (eds) Preparation of catalyts V. Elsevier, Amsterdam, p 617

    Google Scholar 

  10. Craciun R, Nentwick B, Hadjiivanov K, Knözinger H (2003) Appl Ctal A 243:67

    Article  CAS  Google Scholar 

  11. Craciun R, Dulamita N (1999) Ind Eng Chem Res 38:1357

    Article  CAS  Google Scholar 

  12. Yamashita T, Vannice A (1996) J Catal 163:158

    Article  CAS  Google Scholar 

  13. Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykiosy X (1998) J Catal 178:214

    Article  CAS  Google Scholar 

  14. Reed C, Xi Y, Oyama ST (2005) J Catal 235:378

    Article  CAS  Google Scholar 

  15. Smirniotis PG, Peña DA, Uphade BS (2001) Angew Chem Int Ed Engl 40:2479

    Article  CAS  Google Scholar 

  16. Peña DA, Uphade BS, Smirniotis PG (2004) J Catal 221:431

    Article  Google Scholar 

  17. Luo MF, Zhong YJ, Yuan XX, Zheng XM (1997) Appl Catal A 162:121

    Article  CAS  Google Scholar 

  18. Yu XF, Wu NZ, Xie YC, Tang YQ (2000) J Mater Chem 10:1629

    Article  CAS  Google Scholar 

  19. Mile B, Stirling D, Zammitt MA, Lovell A, Webb M (1990) J Mol Catal 62:179

    Article  CAS  Google Scholar 

  20. Reddy EP, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Appl Catal B 76:123

    Article  Google Scholar 

  21. Leith IR, Howden MG (1988) Appl Catal 37:75

    Article  CAS  Google Scholar 

  22. Sun B, Reddy EP, Smirniotis PG (2006) J Catal 237:314

    Article  CAS  Google Scholar 

  23. Yim SD, Nam IS (2004) J Catal 221:601

    Article  CAS  Google Scholar 

  24. Fountzoula Ch, Matralis HK, Papadopoulou Ch, Voyiatzis GA, Kordulis Ch (1997) J Catal 172:391

    Article  CAS  Google Scholar 

  25. Oyama ST, Went GT, Lewis KB, Bell AT, Somorjai GA (1989) J Phys Chem 93:6786

    Article  CAS  Google Scholar 

  26. Amores JMG, Escribano VS, Ramis G, Busca G (1997) Appl Catal B 13:45

    Article  Google Scholar 

  27. Kapteijn F, Singoredjo L, van Driel M, Andreini A, Moulijn JA, Busca G, Ramis G (1994) J Catal 150:105

    Article  CAS  Google Scholar 

  28. Craciun R, Nentwick B, Hadjiivanov K, Knözinger H (2003) Appl Catal A 243:67

    Article  CAS  Google Scholar 

  29. Buciuman F, Patcas F, Carciun R, Zahn DRT (1999) Phys Chem Chem Phys 1:185

    Article  CAS  Google Scholar 

  30. Imamura S, Shono M, Okamoto A, Ishida S (1996) Appl Catal 142:279

    Article  CAS  Google Scholar 

  31. Kapteijn F, van Langeveld D, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE (1994) J Catal 150:94

    Article  CAS  Google Scholar 

  32. Smirniotis PG, Sreekanth PM, Pena DA, Jenkins RG (2006) Ind Eng Chem Res 45:6436

    Article  CAS  Google Scholar 

  33. Arena F, Torre T, Raaimondo C, Parmaliana A (2001) Phys Chem Chem Phys 3:1911

    Article  CAS  Google Scholar 

  34. Singoredjo L, Korver R, Kapteijn F, Moulijn (1992) J Appl Catal B 1:29

    Google Scholar 

  35. Holles JH, Davis RJ, Murray TM, Howe JM (2000) J Catal 195:193

    Article  CAS  Google Scholar 

  36. Zhu H, Shen M, Kong Y, Hong J, Hu Y, Lie T, Dong L, Chen Y, Jian C, Liu Z (2004) J Mol Catal A 219:155

    Article  CAS  Google Scholar 

  37. Wen B, He M (2002) Appl Catal B 37:75

    Article  CAS  Google Scholar 

  38. Trovarelli A (2002) Catalysis by Ceria and related materials. In: Hutchings GJ (ed) Catalytic science series, vol 2. Imperial College Press, London

  39. Monte RD, Kaspar J (2005) Catal Today 100:27

    Article  Google Scholar 

  40. Zhu H, Qin Z, Shan W, Shen W, Wang J (2007) Catal Today 126:382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial support from the US department of Energy (Grant No. DE-FG26–06NT42712). The financial support for Dr. P.M. Sreekanth, from the Provost’s office, University of Cincinnati, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis G. Smirniotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekanth, P.M., Smirniotis, P.G. Selective Reduction of NO with CO Over Titania Supported Transition Metal Oxide Catalysts. Catal Lett 122, 37–42 (2008). https://doi.org/10.1007/s10562-007-9365-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9365-5

Keywords

Navigation