Skip to main content
Log in

A Comparative Study on the Catalytic Activity of Mn Containing MCM-41 Molecular Sieves for Oxidation of p-Cymene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous silica molecular sieves SiMCM-41, AlMCM-41 with Si/Al ratio equal to 158 and MnMCM-41 with Si/Mn ratio equal to 29 were synthesized by hydrothermal method. Manganese oxide impregnated on SiMCM-41 and on AlMCM-41 catalysts were also prepared by wet impregnation method. These catalysts referred as Mn/SiMCM-41 and Mn/AlMCM-41 (158). Both the manganese incorporated and impregnated catalysts structure was elucidated by XRD. Nitrogen adsorption isotherm was used to determine specific surface area, pore volume, and pore size distribution. The thermal stability of the as-synthesized catalyst was studied using TG-DTA. The presence of Mn2+ was evident through DR UV–VIS and ESR spectroscopy. Through ESR studies, MnMCM-41 (29) was assigned to have framework Mn(II) sites. Extra-framework manganese species with well-resolved sextet, centered at g = 2.00 had octahedral symmetry was observed in Mn/SiMCM-41 and Mn/AlMCM-41 (158). Mn retained its +2 oxidation state (ESR active) even upon calcination at 550 °C in presence of air. The catalytic activity of the above-mentioned manganese containing MCM-41 catalysts were tested by vapor phase oxidation of p-cymene with CO2-free air in the temperature range from 200 to 400 °C in steps of 50 °C. The major products were 4-methylacetophenone (4-MAP), 4-isopropyl benzaldehyde (4-IPB), 1,2-epoxyisopropyl benzaldehyde or 1,2-epoxycumenaldehyde (1,2-ECA) and 4-methyl styrene (4-MS). Among the product selectivity, (4-MAP) was found to be higher than that of others. The order of the activity of catalysts followed Mn/SiMCM-41 > Mn/AlMCM-41 (158) > MnMCM-41 (29) > Mn/SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 7

Similar content being viewed by others

References

  1. Fisher RW, Rohrschied F (1996) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometalic compounds, vol 1. VCH, Weinheim

    Google Scholar 

  2. Wentzel BS, Donners MPJ, Alsters PL, Feiters MC, Nolte RJM (2000) Tetrahedron 56:7797

    Article  CAS  Google Scholar 

  3. Nair K, Sawant DP, Shanbhag GV, Halligudi SB (2004) Catal Commun 5:9

    Article  CAS  Google Scholar 

  4. Meunier B (1992) Chem Rev 92:1414

    Article  Google Scholar 

  5. Thellend A, Battiom P, Mansuy D (1994) J Chem Soc Chem Commun 1035

  6. Hsu YF, Cheng CP (1997) J Mol Catal A: Gen 120:109

    Article  Google Scholar 

  7. Aleksandrov VN (1978) Zh Org Khim 14(7):1517

    CAS  Google Scholar 

  8. Basaeva NN, Obukhova TA, Mironov RP (1976) Osnovn Org Sint Neftekhim 6:11

    CAS  Google Scholar 

  9. Baciocchi E, Rol C, Ruzziconi R (1984) J Chem Res Synop 10:334

    Google Scholar 

  10. Lijuan N, Jinliang J, Zang Y (1997) Jingxi Huagong 14(4):45

    Google Scholar 

  11. Vaudano F, Tissot P (2001) Elect Acta 46:875

    Article  CAS  Google Scholar 

  12. Shimizu N, Saito N, Michio U (1989) Stud Surf Sci Catal 44:131

    Article  CAS  Google Scholar 

  13. Kristi AF, US Patent US4740614

  14. Ger. Offen, DE 3440407

  15. Jones GH (1982) J Chem Res (S) 207

  16. Barton DHR, Martell AE, Sawyer DT (eds) (1993) The activation of dioxygen and homogeneous catalytic oxidation. Plenum Press, New York

    Google Scholar 

  17. Partenheimer W (1991) J Mol Catal 67:35

    Article  CAS  Google Scholar 

  18. Zaidi SAH (1986) Appl Catal 27:99

    Article  CAS  Google Scholar 

  19. Burch R, Cruise N, Gleeson D, Tsang SC (1996) J Chem Soc Chem Commun 951

  20. Caps V, Tsang SC (2000) Catal Today 61:19

    Article  CAS  Google Scholar 

  21. Yonemitsu M, Tanaka Y, Iwamoto M (1997) Chem Mater 9:2679

    Article  CAS  Google Scholar 

  22. De G, Karmakar B, Ganfuli D (2000) J Mater Chem 10:2289

    Article  CAS  Google Scholar 

  23. Marler B, Oberhagemann U, Vortmann S, Gies H (1997) Micropor Matter 6:375

    Article  Google Scholar 

  24. Vetrivel S, Pandurangan A (2004) Appl Catal A: Gen 264:243

    Article  CAS  Google Scholar 

  25. Luan Z, Xu J, He H, Klinowski J, Kevan L (1996) J Phys Chem 100:19595

    Article  CAS  Google Scholar 

  26. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  27. He N, Bao S, Xu Q (1998) Appl Catal A: Gen 169:29

    Article  CAS  Google Scholar 

  28. Chen YW, Lu YH (1999) Ind Eng Chem Res 38:1893

    Article  CAS  Google Scholar 

  29. Velu S, Shah N, Jyothi TM, Sivasankar S (1999) Micropor Mesopor Mater 33:61

    Article  CAS  Google Scholar 

  30. Zhang Q, Wang Y, Itsuki S, Shishido T, Takehira K (2002) J Mol Catal A: Chem 188:189

    Article  CAS  Google Scholar 

  31. Vetrivel S, Pandurangan A (2005) Ind Eng Chem Res 44:692

    Article  CAS  Google Scholar 

  32. Cotton FA, Wilkinson G (1966) Advanced inorganic chemistry. Wiley Eastern Private Limited, New Delhi

    Google Scholar 

  33. Molella F, Gallardo-Amores JM, Baldi M, Busca G (1998) J Mater Chem 8:2525

    Article  Google Scholar 

  34. Vetrivel S, Pandurangan A (2004) J Mol Catal A: Chem 217:165

    Article  CAS  Google Scholar 

  35. Levi Z, Raitsimring AM, Goldfarb D (1991) J Phys Chem 95:7830

    Article  CAS  Google Scholar 

  36. Xu J, Luan A, Wasowiscz T, Kevan L (1998) Micropor Mesopor Mater 22:179

    Article  CAS  Google Scholar 

  37. Zhao DY, Goldfarb D (1995) In: Bonneviot L, Kaliaguine S (eds) Zeolites: a refined tool for designing catalytic sites. Elsevier, Amsterdam, p 181

    Chapter  Google Scholar 

  38. Steel A, Carr SW, Anderson MW (1994) J Chem Soc ChemCommun 1571

  39. Wang L, Shi J, Yu J, Yan D (1998) Nanostruct Mater 10:1289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vetrivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrivel, S., Pandurangan, A. A Comparative Study on the Catalytic Activity of Mn Containing MCM-41 Molecular Sieves for Oxidation of p-Cymene. Catal Lett 120, 71–81 (2008). https://doi.org/10.1007/s10562-007-9251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9251-1

Keywords

Navigation