Skip to main content
Log in

FT-IR spectroscopic investigation of the surface reaction of CH4 with NO x species adsorbed on Pd/WO3–ZrO2 catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The interaction of methane at various temperatures with NO x species formed by room temperature adsorption of NO + O2 mixture on tungstated zirconia (18.6 wt.% WO3) and palladium(II)-promoted tungstated zirconia (0.1 wt.% Pd) has been investigated using in situ FT-IR spectroscopy. A mechanism for the reduction of NO over the Pd-promoted tungstated zirconia is proposed, which involves a step consisting of thermal decomposition of the nitromethane to adsorbed NO and formates through the intermediacy of cis-methyl nitrite. The HCOO formed acts as a reductant of the adsorbed NO producing nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Scheme 1.

Similar content being viewed by others

References

  1. Li Y., Armor J.N. (1992) . Appl. Catal. B 1:L31

    Article  CAS  Google Scholar 

  2. Y. Nishizaka and M. Misono, Chem. Lett. (1993) 1295

  3. Y. Nishizaka and M. Misono, Chem. Lett. (1994) 2237

  4. Ogura M., Sigura Y., Hayashi M., Kikuchi E. (1996) Catal. Lett. 42:185

    Article  CAS  Google Scholar 

  5. Montes de Correra M., Córdoba Castrillón F. (2005) J. Mol. Catal. A 228:267

    Article  CAS  Google Scholar 

  6. Chin Y.H., Alvarez W.E., Resasco D.E. (1999) Catal. Today 62:159

    Article  Google Scholar 

  7. Chin Y.H., Alvarez W.E., Resasco D.E. (1999) Catal. Today 62:291

    Article  Google Scholar 

  8. Okumura K., Kusakabe T., Niwa M. (2003) . Appl. Catal. B 41:137

    Article  CAS  Google Scholar 

  9. Kato H., Yokoyama C., Misono M. (1997) . Catal. Lett. 47:189

    Article  CAS  Google Scholar 

  10. Kato H., Yokoyama C., Misono M. (1998) Catal. Today 45:93

    Article  CAS  Google Scholar 

  11. Adelman B.J., Sachtler W.M.H. (1997) Appl. Catal. B 14:1

    Article  CAS  Google Scholar 

  12. Lobree L.J., Aylor A.W., Reimer J.A., Bell A.T. (1999) J. Catal. 181:189

    Article  CAS  Google Scholar 

  13. Shimizu K., Okada F., Nakamura Y., Satsuma A., Hattori T. (2000) J. Catal. 195:151

    Article  CAS  Google Scholar 

  14. Cowan A.D., Cant N.W., Haynes B.S., Nelson P.F. (1998) J. Catal. 176:329

    Article  CAS  Google Scholar 

  15. F. Poignant, J. Saussey, J.-C. Lavalley and G. Mabilon Chem. Commun. (1995) 89

  16. Sadykov V.A., Lunin V.V., Matyshak V.A., Paukshtis E.A., Rozovskii A.Ya., Bulgakov N.N., Ross J.R. (2003) Kinet. Catal. 44:379

    Article  CAS  Google Scholar 

  17. Kantcheva M., Vakkasoglu A.S. (2004) J. Catal. 223:364

    Article  CAS  Google Scholar 

  18. Tsyntsarski B., Averska V., Kolev H., Marinova Ts., Klissurski D., Hadjiivanov K. (2003) J. Mol. Catal. A 193:139

    Article  CAS  Google Scholar 

  19. S. Kuba, K. Hadjiivanov, H. Knözinger, in: Stud. Surf. Sci. Catal., Vol. 130, eds. A. Corma, F.V. Melo, S. Mendioroz and J.L.G. Fierro (Elsevier, Amsterdam, 2000) p. 1259

  20. Kantcheva M., Cayirtepe I. (2006) J. Mol. Catal. A 247:88

    Article  CAS  Google Scholar 

  21. Melezshyk O.V., Prudis S.V., Beri V.V. (2001) Microp. Mesopor. Mater. 49:39

    Article  Google Scholar 

  22. Busca G., Lamotte J., Lavalley J.-C., Lorenzelli V. (1987) J. Am. Chem. Soc. 109:5197

    Article  CAS  Google Scholar 

  23. Busca G., Elmi A.S., Forzatti P. (1987) J. Phys. Chem. 91:5263

    Article  CAS  Google Scholar 

  24. Kantcheva M., Kucukkal M.U., Suzer S. (2000) J. Catal. 190:144

    Article  CAS  Google Scholar 

  25. Busca G., Lorenzelli V. (1982) Mater. Chem. 7:89

    Article  CAS  Google Scholar 

  26. Jung K.T., Bell A.T. (2001) J. Catal. 204:339

    Article  CAS  Google Scholar 

  27. Kohler S.D., Eckerdt J.G. (1994) J. Phys. Chem. 98:1276

    Article  CAS  Google Scholar 

  28. Kantcheva M., Ciftlikli E.Z. (2002) J. Phys. Chem. B 106:3941

    Article  CAS  Google Scholar 

  29. Hill J.R., Moore D.S., Schmidt S.C., Storm C.B. (1991) J. Phys. Chem. 95:3037

    Article  CAS  Google Scholar 

  30. Yasuda H., Miyamoto T., Misono M. (1995) ACS Symp. Ser. 587:110

    Article  CAS  Google Scholar 

  31. Levoguer C.L., Nix R.M. (1997) J. Chem. Soc. Faraday Trans. 93:1813

    Article  CAS  Google Scholar 

  32. Yamaguchi M. (1997) J. Chem. Soc. Faraday Trans. 93:3581

    Article  CAS  Google Scholar 

  33. Kameoka S., Chafik T., Ukusi Y., Miyadera T. (1998) Catal. Lett. 51:11

    Article  CAS  Google Scholar 

  34. Nesterenko N., Lima E., Graffin P., de Ménorval L.C., Laspéras M., Tichit D., Fajula F. (1999) New J. Chem. 23:665

    Article  CAS  Google Scholar 

  35. Park S.-K., Choo H., Kevan L. (2001) Phys. Chem. Chem. Phys. 3:3247

    Article  CAS  Google Scholar 

  36. Zuzaniuk V., Meunier F.C., Ross J.R.H. (2001) J. Catal. 202:340

    Article  CAS  Google Scholar 

  37. Haber J., Janas J., Kryściak-Czerwenka J., Machej T., Sadowska H., Helldén S. (2002) Appl. Catal. A 229:23

    Article  CAS  Google Scholar 

  38. Yeom Y.H., Wen B., Sactler W.M.H., Weitz W. (2004) J. Phys. Chem. B 108:5386

    Article  CAS  Google Scholar 

  39. Yeom Y.H., Li M., Sactler W.M.H., Weitz W. (2006) J. Catal. 238:100

    Article  CAS  Google Scholar 

  40. Bodenbinder M., Ulic S.E., Willner H. (1994) J. Phys. Chem. 98:6441

    Article  CAS  Google Scholar 

  41. Fieberg J.E., White J.M. (1997) J. Vac. Sci. Technol. A 15:1674

    Article  CAS  Google Scholar 

  42. Kantcheva M. (2003) Appl. Catal. B 42:89

    Article  CAS  Google Scholar 

  43. Solymosi F., Bánsági T. (1979) J. Phys. Chem. 83:552

    Article  CAS  Google Scholar 

  44. Solymosi F., Bánsági T. (1995) J. Catal. 156:75

    Article  CAS  Google Scholar 

  45. Satsuma A., Cowan A.D., Cant N.W., Trimm D.L. (1999) J. Catal. 181:165

    Article  CAS  Google Scholar 

  46. Otsuka K., Takahashi R., Yamanaka I. (1999) J. Catal. 185:182

    Article  CAS  Google Scholar 

  47. A.A. Davydov in: Molecular Spectroscopy of Oxide Catalyst Surfaces ed. N.T. Sheppard (Wiley, New York, 2003), p. 399

  48. Grzybowska-Swierkosz B. (2000) Top. Catal. 11/12:23

    Article  CAS  Google Scholar 

  49. Moro-oka Y. (1999) Appl. Catal. 181:323

    Article  CAS  Google Scholar 

  50. Sinev M.Yu. (2003) J. Catal. 216:468

    Article  CAS  Google Scholar 

  51. Kuba S., Concepción Heydorn P., Grasselli R.K., Gates B.C., Che M., Knözinger H. (2001) Phys. Chem. Chem. Phys. 3:146

    Article  CAS  Google Scholar 

  52. Fu G., Xu X., Lu X.,Wan H. (2005) J. Am. Chem. Soc. 127:3989

    Article  PubMed  CAS  Google Scholar 

  53. He Y., Sanders W.A., Lin M.C. (1988) J. Phys. Chem. 92:5474

    Article  CAS  Google Scholar 

  54. Laane J., Ohlsen J.R. (1986) Prog. Inorg. Chem. 28:465

    Google Scholar 

  55. Amores J.M.G., Escribano V.S., Ramis G., Busca G. (1997) Appl. Catal. B 13:45

    Article  Google Scholar 

  56. A.A. Davydov Molecular Spectroscopy of Oxide Catalyst Surfaces ed. N.T. Sheppard (Wiley, New York, 2003), p. 448

  57. Kheir A.A., Haw J.F. (1994) J. Am. Chem. Soc. 116:817

    Article  CAS  Google Scholar 

  58. Sun T., Fokema M.D., Ying J.Y. (1997) Catal. Today 33:251

    Article  CAS  Google Scholar 

  59. Beloshapkin S.A., Paukshtis A.A., Sadykov V.A. (2000) J. Mol. Catal. A 158:355

    Article  CAS  Google Scholar 

  60. Blower C.J., Smith T.D. (1993) Zeolites 13:394

    Article  CAS  Google Scholar 

  61. Li Y., Slager T.L., Armor J.N. (1994) J. Catal. 150:388

    Article  CAS  Google Scholar 

  62. Lukyanov D.B., Lombardo E.A., Sill G.A., d’Itri J.L., Hall W.K. (1996) J. Catal. 163:447

    Article  CAS  Google Scholar 

  63. Hu W.-F., He T.-J., Chen D.-M., Liu F.-C. (2002) J. Phys. Chem. A 106:7294

    Article  CAS  Google Scholar 

  64. Nguyen M.T., Le H.T., Hajgató B., Veszprémi T., Lin M.C. (2003) J. Phys. Chem. A 107:4286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Bilkent University and the Scientific and Technical Research Council of Turkey (TÜBITAK), Project TBAG-2140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Kantcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantcheva, M., Cayirtepe, I. FT-IR spectroscopic investigation of the surface reaction of CH4 with NO x species adsorbed on Pd/WO3–ZrO2 catalyst. Catal Lett 115, 148–162 (2007). https://doi.org/10.1007/s10562-007-9081-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9081-1

Keywords

Navigation