Skip to main content
Log in

Adsorption Thermodynamics of Sulfur- and Nitrogen-containing Molecules on NiMoS: A DFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Detailed adsorption thermodynamic data of organosulfur and organonitrogen molecules on NiMoS hydrotreating catalyst active sites were studied by density-functional theory (DFT) calculations. Initially, the adsorption of the molecules on the NiMoS edge surface is studied, and the most stable configuration for each molecule is identified. The changes in electronic energy and zero point vibrational energy upon the adsorption of different molecules on the NiMoS surface are calculated. The contribution of adsorbed molecules, as well as gas phase molecules, to changes in entropy and C p values are obtained by calculating vibrational frequencies of adsorbed and free molecules. With these data, the changes in enthalpy, entropy, and free energy due to the adsorption on the NiMoS edge surface at different temperatures are determined. These data can be used to estimate the relative surface coverage of each type of species at different reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Topsøe B. Hinnemann J.K. Nørskov J.V. Lauritsen F. Besenbacher P.L. Hansen G. Hytoft R.G. Egeberg K.G. Knudsen (2005) Catal. Today 107 12 Occurrence Handle10.1016/j.cattod.2005.07.165

    Article  Google Scholar 

  2. L.S. Byskov J.K. Nørskov B.S. Clausen H. Topsøe (1999) J. Catal. 187 109 Occurrence Handle1:CAS:528:DyaK1MXlvFagsrc%3D Occurrence Handle10.1006/jcat.1999.2598

    Article  CAS  Google Scholar 

  3. P. Raybaud J. Hafner G. Kresse S. Kasztelan H. Toulhoat (2000) J. Catal. 190 128 Occurrence Handle1:CAS:528:DC%2BD3cXnsVeqsA%3D%3D Occurrence Handle10.1006/jcat.1999.2743

    Article  CAS  Google Scholar 

  4. H. Schweiger P. Raybaud H. Toulhoat (2000) J. Catal. 212 33 Occurrence Handle10.1006/jcat.2002.3737

    Article  Google Scholar 

  5. M. Sun J. Adjaye A.E. Nelson (2004) Appl. Catal. A. 263 131 Occurrence Handle1:CAS:528:DC%2BD2cXjvVWksbc%3D Occurrence Handle10.1016/j.apcata.2003.12.011

    Article  CAS  Google Scholar 

  6. M. Sun A.E. Nelson J. Adjaye (2004) J. Catal. 226 32 Occurrence Handle1:CAS:528:DC%2BD2cXlsFagtbk%3D Occurrence Handle10.1016/j.jcat.2004.05.005

    Article  CAS  Google Scholar 

  7. C.N. Satterfield M. Modell J.A. Wilkens (1980) Ind. Eng. Chem. Process Des. Dev. 19 154 Occurrence Handle1:CAS:528:DyaL3cXktFOitw%3D%3D Occurrence Handle10.1021/i260073a027

    Article  CAS  Google Scholar 

  8. G.C. Laredo A. Montesinos J.A. los Reyes ParticleDe (2004) Appl. Catal. A 265 171 Occurrence Handle1:CAS:528:DC%2BD2cXktVCjtL4%3D Occurrence Handle10.1016/j.apcata.2004.01.013

    Article  CAS  Google Scholar 

  9. M. Egorova R. Prins (2004) J. Catal. 224 278 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGisro%3D Occurrence Handle10.1016/j.jcat.2004.03.005

    Article  CAS  Google Scholar 

  10. S. Shin K. Sakanishi I. Mochida D.A. Grudoski J.H. Shinn (2000) Energy Fuels 14 539 Occurrence Handle1:CAS:528:DC%2BD3cXitVGnsb8%3D Occurrence Handle10.1021/ef990136m

    Article  CAS  Google Scholar 

  11. D. Ferdous A.K. Dalai J. Adjaye (2003) Energy Fuels 17 164 Occurrence Handle1:CAS:528:DC%2BD38Xpt1CmtbY%3D Occurrence Handle10.1021/ef020126c

    Article  CAS  Google Scholar 

  12. M. Sun A.E. Nelson J. Adjaye (2005) Catal. Today 105 36 Occurrence Handle1:CAS:528:DC%2BD2MXlsFCrsbw%3D Occurrence Handle10.1016/j.cattod.2005.04.002

    Article  CAS  Google Scholar 

  13. M. Sun A.E. Nelson J. Adjaye (2005) J. Catal. 233 411 Occurrence Handle1:CAS:528:DC%2BD2MXmtFGiu7w%3D Occurrence Handle10.1016/j.jcat.2005.05.009

    Article  CAS  Google Scholar 

  14. M. Sun A.E. Nelson J. Adjaye (2005) Catal. Today 109 49 Occurrence Handle1:CAS:528:DC%2BD2MXhtF2qtrvK Occurrence Handle10.1016/j.cattod.2005.08.024

    Article  CAS  Google Scholar 

  15. M. Sun A.E. Nelson J. Adjaye (2005) J. Catal. 231 223 Occurrence Handle1:CAS:528:DC%2BD2MXisFyiurg%3D Occurrence Handle10.1016/j.jcat.2005.01.021

    Article  CAS  Google Scholar 

  16. B. Delley (2000) J. Chem. Phys. 113 7756 Occurrence Handle1:CAS:528:DC%2BD3cXnslOntro%3D Occurrence Handle10.1063/1.1316015

    Article  CAS  Google Scholar 

  17. A.D. Becke (1988) J. Chem. Phys. 88 2547 Occurrence Handle1:CAS:528:DyaL1cXltlGitr8%3D Occurrence Handle10.1063/1.454033

    Article  CAS  Google Scholar 

  18. J.P. Perdew Y. Wang (1992) Phys. Rev. B 45 13244 Occurrence Handle10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  19. M. Dolg U. Wedig H. Stoll H. Preuss (1987) J. Chem. Phys. 86 866 Occurrence Handle1:CAS:528:DyaL2sXht1Khsr8%3D Occurrence Handle10.1063/1.452288

    Article  CAS  Google Scholar 

  20. A. Bergner M. Dolg W. Kuechle H. Stoll H. Preuss (1993) Mol. Phys. 80 1431 Occurrence Handle1:CAS:528:DyaK2cXhsVCmsLo%3D Occurrence Handle10.1080/00268979300103121

    Article  CAS  Google Scholar 

  21. S. Cristol J.F. Paul E. Payen D. Bougeard S. Clémendot F. Hutschka (2000) J. Phys. Chem. B 104 11220 Occurrence Handle1:CAS:528:DC%2BD3cXnslCqt74%3D Occurrence Handle10.1021/jp0023819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Nelson, A.E. & Adjaye, J. Adsorption Thermodynamics of Sulfur- and Nitrogen-containing Molecules on NiMoS: A DFT Study. Catal Lett 109, 133–138 (2006). https://doi.org/10.1007/s10562-006-0069-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0069-z

Keywords

Navigation