Skip to main content
Log in

Reactive Adsorption Desulfurization of Olefin-Containing Feedstocks over Ni/ZnO–Al2O3 Adsorbents: Effects of ZnO–Al2O3 Support Composition

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Several adsorption-catalytic systems have been synthesized, which are different by the composition and method of the support preparation. The composition and physicochemical characteristics of the synthesized composites were studied using nitrogen porosimetry, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and transmission electron microscopy. The desulfurization depth and the hydrodesulfurization selectivity concerning the hydrogenation reaction (HDS/HYD selective factor) were evaluated in the reactive adsorption of model FCC gasoline containing thiophene (2630 ppm) and hexene-1 (20 wt %) on a fixed-bed flow unit. It has been established that a desulfurization depth of >99% at the chemisorption stage is achieved at a temperature of 400°C, a pressure of 0.5 MPa, and a WHSV of 5.2 h–1 on a Ni/ZnO@Al2O3 adsorption-catalytic system synthesized by coprecipitation and subsequent incipient wetness impregnation. For Ni/(ZnO)Al2O3 adsorption-catalytic systems, it was shown that an increase in the Ni particles’ average size leads to an increase in HDS/HYD selectivity at the chemisorption stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Tawara, K., Nishimura, T., Iwanami, H., Nishimoto, T., and Hasuike, T., Ind. Eng. Chem. Res., 2001, vol. 40, no. 10, pp. 2367–2370. https://doi.org/10.1021/ie000453c

    Article  CAS  Google Scholar 

  2. Song, C. and Ma, X., Int. J. Green Energy, 2004, vol. 1, no. 2, pp. 167–191. https://doi.org/10.1081/GE-120038751

    Article  CAS  Google Scholar 

  3. Geng, X., Zhang, G., Wang, X., Song, B., and Chen, Y., Res. Square, 2020, pp. 1–17. https://doi.org/10.21203/rs.3.rs-132338/v1

  4. Bezverkhyy, I., Gadacz, G., and Bellat, J.-P., Mat. Chem. Phys., 2009, vol. 114, pp. 897–901. https://doi.org/10.1016/j.matchemphys.2008.10.058

    Article  CAS  Google Scholar 

  5. Wang, L., Zhao, L., Xu, C., Wang, Y., and Gao, J., Appl. Surf. Sci., 2017, vol. 399, pp. 440–450. https://doi.org/10.1016/j.apsusc.2016.11.160

    Article  CAS  Google Scholar 

  6. Bezverkhyy, I., Ryzhikov, A., Gadacz, G., and Bellat, J.-P., Catal. Today, 2008, vol. 130, pp. 199–205. https://doi.org/10.1016/j.cattod.2007.06.038

    Article  CAS  Google Scholar 

  7. Ryzhikov, A., Bezverkhyy, I., and Bellat, J.-P., Appl. Catal. B: Environ., 2006, vol. 84, pp. 766–772. https://doi.org/10.1016/j.apcatb.2008.06.009

    Article  CAS  Google Scholar 

  8. Huang, L., Yan, L., Tang, M., Wang, G., Qin, Z., and Ge, H., ACS Omega, 2018, vol. 3, pp. 18967–18975. https://doi.org/10.1021/acsomega.8b02843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meng, X., Huang, H., Weng, H., and Shi, L., Bull. Korean Chem. Soc., 2012, vol. 33, no. 10, pp. 3213–3217. https://doi.org/10.5012/bkcs.2012.33.10.3213

    Article  CAS  Google Scholar 

  10. Yin, H.-y., Li, C.-h., Wang, L.-x., and Yu, Y.-m., Adv. Mater. Res., 2009, vol. 79–82, pp. 2219–2222. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2219

    Article  CAS  Google Scholar 

  11. Weicheng, C., Xiaoling. Y, Huan, H., Li, S., and Xuan, M., China Petrol. Proc. Petrochem. Technol., 2016, vol. 18, no. 4, pp. 11–18.

    Google Scholar 

  12. Fan, J., Wang, G., Sun, Y., Xu, C., Zhou, H., Zhou, G., and Gao, J., Ind. Eng. Chem. Res., 2010, vol. 49, pp. 8450–8460. https://doi.org/10.1021/ie100923v

    Article  CAS  Google Scholar 

  13. Zhao, L., Chen, Y., Gao, J., and Chen, Y., Front. Chem. Eng. China, 2010, vol. 4, no. 3, pp. 314–321. https://doi.org/10.1007/s11705-009-0271-9

    Article  CAS  Google Scholar 

  14. Brunet, S., Mey, D., Pe´rot, G., Bouchy, C., and Diehl, F., Appl. Catal. A: General, 2005, vol. 278, pp. 143–172. https://doi.org/10.1016/j.apcata.2004.10.012

    Article  CAS  Google Scholar 

  15. Zhao, J., Zhang, L., She, N., Liu, Y., Chai, Y., and Liu, C., Appl. Petrochem. Res., 2014, vol. 4, pp. 359–365. https://doi.org/10.1007/s13203-014-0072-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ju, F., Liu, C., Li, K., Meng, C., Gao, S., and Ling, H., Energy Fuels, 2016, vol. 30, no. 8, pp. 6688–6697. https://doi.org/10.1021/acs.energyfuels.6b01117

    Article  CAS  Google Scholar 

  17. Daudin, A., Brunet, S., Perot, G., Raybaud, P., and Bouchy, C., J. Catal., 2007, vol. 248, pp. 111–119. https://doi.org/10.1016/j.jcat.2007.03.009

    Article  CAS  Google Scholar 

  18. Li, P., Chen, Y., Zhang, C., Huang, B., Liu, X., Liu, T., Jiang, Z., and Li, C., Appl. Catal. A: General, 2017, vol. 533, pp. 99–108. https://doi.org/10.1016/j.apcata.2017.01.009

    Article  CAS  Google Scholar 

  19. Wang, G., Wen, Y., Fan, J., Xu, C., and Gao, J., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 12449–12459. https://doi.org/10.1021/ie201144u

    Article  CAS  Google Scholar 

  20. Li, M., Li, H., Jiang, F., Chu, Y., and Nie, H., Catal. Today, 2010, vol. 149, pp. 35–39. https://doi.org/10.1016/j.cattod.2009.03.017

    Article  CAS  Google Scholar 

  21. Bergeret, G. and Gallezot, P., Handbook of Heretogeneous Catalysis, Wiley-VCH, 2008, pp. 738–765.

  22. Zhang, C., Liu, X., and Liu, T., Appl. Catal. A: General, 2019, vol. 575, pp. 1–37. https://doi.org/10.1016/j.apcata.2019.02.025

    Article  CAS  Google Scholar 

  23. Ishutenko, D., Anashkin, Yu., and Nikulshin, P., Appl. Catal. B: Environ., 2019, vol. 259, pp. 118041–118052. https://doi.org/10.1016/j.apcatb.2019.1180

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR and INSF, project number 20-58-56019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Botin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botin, A.A., Mozhaev, A.V., Khamzin, Y.A. et al. Reactive Adsorption Desulfurization of Olefin-Containing Feedstocks over Ni/ZnO–Al2O3 Adsorbents: Effects of ZnO–Al2O3 Support Composition. Pet. Chem. 62, 621–627 (2022). https://doi.org/10.1134/S0965544122050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122050036

Keywords:

Navigation