Skip to main content
Log in

Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Bimetallic palladium–platinum nanoparticles supported on alumina were prepared by flame spray pyrolysis. The as-prepared materials were characterized by scanning transmission electron microscopy (STEM), CO chemisorption, nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), thermogravimetric analysis (TGA) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The materials were tested for the catalytic combustion of methane with a focus on the thermal stability of the noble metal particles. After flame synthesis the noble metal components of the materials were predominantly in oxidized state and finely dispersed on the alumina matrix. Reduction afforded small bimetallic Pd–Pt alloy particles (< 5 nm) supported on Al2O3 ceramic nanoparticles. The addition of small amounts of platinum made the palladium particles more resistant against sintering at high temperatures and further lowered the deactivation observed during methane combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Centi (2001) J. Mol. Catal. A-Chem. 173 287 Occurrence Handle10.1016/S1381-1169(01)00155-8

    Article  Google Scholar 

  2. D. Ciuparu M.R. Lyubovsky E. Altman L.D. Pfefferle A. Datye (2002) Catal. Rev.-Sci. Eng. 44 593 Occurrence Handle10.1081/CR-120015482

    Article  Google Scholar 

  3. P. Gélin M. Primet (2002) Appl. Catal. B-Environ. 39 1 Occurrence Handle10.1016/S0926-3373(02)00076-0

    Article  Google Scholar 

  4. A. Ersson H. Kušar R. Carroni T. Griffin S. Järås (2003) Catal. Today 83 265 Occurrence Handle10.1016/S0920-5861(03)00247-5

    Article  Google Scholar 

  5. K. Narui H. Yata K. Furuta A. Nishida Y. Kohtoku T. Matsuzaki (1999) Appl. Catal. A-Gen. 179 165 Occurrence Handle10.1016/S0926-860X(98)00306-8

    Article  Google Scholar 

  6. C. Micheaud P. Marécot M. Guérin J. Barbier (1998) Appl. Catal. A-Gen. 171 229 Occurrence Handle10.1016/S0926-860X(98)00093-3

    Article  Google Scholar 

  7. C.L. Pieck C.R. Vera E.M. Peirotti J.C. Yori (2002) Appl. Catal. A-Gen. 226 281 Occurrence Handle10.1016/S0926-860X(01)00914-0

    Article  Google Scholar 

  8. B. Coq F. Figueras (2001) J. Mol. Catal. A-Chem. 173 117 Occurrence Handle10.1016/S1381-1169(01)00148-0

    Article  Google Scholar 

  9. J. Barbier, in: Handbook of Heterogeneous Catalysis, Vol. 1, (eds.) G. Ertl, H. Knözinger, and J. Weitkamp (Wiley-VCH, Weinheim, 1997) 257

  10. J.P. Candy B. Didillon E.L. Smith T.B. Shay J.M. Basset (1994) J. Mol. Catal. 86 179 Occurrence Handle10.1016/0304-5102(93)E0211-X

    Article  Google Scholar 

  11. B.C. Gates (1986) Stud. Surf. Sci. Catal. 29 415

    Google Scholar 

  12. J.H. Sinfelt (1983) Bimetallic Catalysts J. Wiley & Sons Inc. New York

    Google Scholar 

  13. N. Toshima M. Harada T. Yonezawa K. Kushihashi K. Asakura (1991) J. Phys. Chem. 95 7448 Occurrence Handle10.1021/j100172a061

    Article  Google Scholar 

  14. S.N. Reifsnyder H.H. Lamb (1999) J. Phys. Chem. B 103 321 Occurrence Handle10.1021/jp982893b

    Article  Google Scholar 

  15. P.L. Hansen A.M. Molenbroek A.V. Ruban (1997) J. Phys. Chem. B 101 1861 Occurrence Handle10.1021/jp962771o

    Article  Google Scholar 

  16. L.E. Aleandri H. Bönnemann D.J. Jones J. Richter J. Rozière (1995) J. Mater. Chem. 5 749 Occurrence Handle10.1039/jm9950500749

    Article  Google Scholar 

  17. T. Johannessen J.R. Jenson M. Mosleh J. Johansen U. Quaade H. Livbjerg (2004) Chem. Eng. Res. Des. 82 1444 Occurrence Handle10.1205/cerd.82.11.1444.52025

    Article  Google Scholar 

  18. T. Johannessen S. Koutsopoulos (2002) J. Catal. 205 404 Occurrence Handle10.1006/jcat.2001.3447

    Article  Google Scholar 

  19. R. Strobel W.J. Stark L. Mädler S.E. Pratsinis A. Baiker (2003) J. Catal. 213 296 Occurrence Handle10.1016/S0021-9517(02)00082-9

    Article  Google Scholar 

  20. R. Strobel F. Krumeich W.J. Stark S.E. Pratsinis A. Baiker (2004) J. Catal. 222 307 Occurrence Handle10.1016/j.jcat.2003.10.012

    Article  Google Scholar 

  21. L. Mädler W.J. Stark S.E. Pratsinis (2003) J. Mater. Res. 18 115

    Google Scholar 

  22. S.E. Pratsinis (1998) Prog. Energy Combust. Sci. 24 197 Occurrence Handle10.1016/S0360-1285(97)00028-2

    Article  Google Scholar 

  23. R. Strobel S.E. Pratsinis A. Baiker (2005) J. Mater. Chem. 15 605 Occurrence Handle10.1039/b413198c

    Article  Google Scholar 

  24. L. Mädler H.K. Kammler R. Mueller S.E. Pratsinis (2002) J. Aerosol. Sci. 33 369 Occurrence Handle10.1016/S0021-8502(01)00159-8

    Article  Google Scholar 

  25. J.D. Grunwaldt M. Caravati S. Hannemann A. Baiker (2004) Phys. Chem. Chem. Phys. 6 3037 Occurrence Handle10.1039/b403071k

    Article  Google Scholar 

  26. B.S. Clausen G. Steffensen B. Fabius J. Villadsen R. Feidenhansl H. Topsøe (1991) J. Catal. 132 524 Occurrence Handle10.1016/0021-9517(91)90168-4

    Article  Google Scholar 

  27. T. Ressler (1998) J. Synchr. Radiat. 5 118 Occurrence Handle10.1107/S0909049597019298

    Article  Google Scholar 

  28. S.I. Zabinsky J.J. Rehr A. Ankudinov R.C. Albers M.J. Eller (1995) Phys. Rev. B 52 2995 Occurrence Handle10.1103/PhysRevB.52.2995

    Article  Google Scholar 

  29. J.D. Grunwaldt M. Maciejewski A. Baiker (2003) Phys. Chem. Chem. Phys. 5 1481 Occurrence Handle10.1039/b211670g

    Article  Google Scholar 

  30. D. Bazin A. Triconnet P. Moureaux (1995) Nucl. Instrum. Method Phys. Res. B 97 41 Occurrence Handle10.1016/0168-583X(94)00713-6

    Article  Google Scholar 

  31. N. Matsubayashi H. Yasuda M. Imamura Y. Yoshimura (1998) Catal. Today 45 375 Occurrence Handle10.1016/S0920-5861(98)00267-3

    Article  Google Scholar 

  32. M. Boudart H.S. Hwang (1975) J. Catal. 39 44 Occurrence Handle10.1016/0021-9517(75)90280-8

    Article  Google Scholar 

  33. R.J. Farrauto M.C. Hobson T. Kennelly E.M. Waterman (1992) Appl. Catal. A-Gen. 81 227 Occurrence Handle10.1016/0926-860X(92)80095-T

    Article  Google Scholar 

  34. A.K. Datye J. Bravo T.R. Nelson P. Atanasova M. Lyubovsky L. Pfefferle (2000) Appl. Catal. A-Gen. 198 179 Occurrence Handle10.1016/S0926-860X(99)00512-8

    Article  Google Scholar 

  35. M. Skoglundh L.O. Löwendahl J.E. Ottersted (1991) Appl. Catal. 77 9 Occurrence Handle10.1016/0166-9834(91)80019-S

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Baiker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobel, R., Grunwaldt, JD., Camenzind, A. et al. Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion. Catal Lett 104, 9–16 (2005). https://doi.org/10.1007/s10562-005-7429-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7429-y

Key words

Navigation