Skip to main content
Log in

Indications for Metal-support Interactions: The Case of CO2Adsorption on Cu/ZnO(0001)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molecular beam scattering has been combined with TDS to provide consistent evidence for metal-support interactions (MSI). CO2 adsorbs on the Cu cluster and populated the perimeter of the clusters. The Cu-free areas of the support remain essentially clean. Hence, a synergistic effect such as MSI is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Askgaard J.K. Norskov C.V. Ovesen P. Stoltze (1995) J. Catal. 156 229 Occurrence Handle10.1006/jcat.1995.1250

    Article  Google Scholar 

  2. J.B. Hansen, in Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knötzinger and J. Weitkamp, (VCH, 2001)

  3. K. Klier (1982) Adv. Catal. 31 243

    Google Scholar 

  4. B.S. Clausen H. Topsoe (1991) Catal. Today 9 189 Occurrence Handle10.1016/0920-5861(91)85023-2

    Article  Google Scholar 

  5. J. Yoshihara C.T. Campbell (1996) J. Catal. 161 776 Occurrence Handle10.1006/jcat.1996.0240

    Article  Google Scholar 

  6. P.L. Hansen J.B. Wagner S. Helveg J.R. Rostrup-Nielsen B.S. Clausen H. Topsoe (2002) Science 295 2053 Occurrence Handle10.1126/science.1069325 Occurrence Handle11896271

    Article  PubMed  Google Scholar 

  7. J.D. Grunwaldt A.M. Molenbroek N.Y. Topsoe H. Topsoe B.S. Clausen (2000) J. Catal. 194 452 Occurrence Handle10.1006/jcat.2000.2930

    Article  Google Scholar 

  8. K.D. Jung O.S. Joo S.H. Han (2000) Catal. Lett. 68 49 Occurrence Handle10.1023/A:1019027302428

    Article  Google Scholar 

  9. H. Nakatsuji Z.M. Hu (2000) Intern. J. Quantum Chem. 77 341 Occurrence Handle10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-T

    Article  Google Scholar 

  10. I. Nakamura H. Nakano T. Fujitani T. Uchijima J. Nakamura (1998) Surf. Sci. 402–404 92 Occurrence Handle10.1016/S0039-6028(97)00910-2

    Article  Google Scholar 

  11. K.C. Waugh (1999) Catal Lett. 58 163 Occurrence Handle10.1023/A:1019025816831

    Article  Google Scholar 

  12. S.A. French (2001) Angew. Chem. 113 4569 Occurrence Handle10.1002/1521-3757(20011203)113:23<4569::AID-ANGE4569>3.0.CO;2-F

    Article  Google Scholar 

  13. D.W. Goodman (2005) J. Catal. Lett. 99 1 Occurrence Handle10.1007/s10562-004-0768-2

    Article  Google Scholar 

  14. R. Meyer M. Baumer S.K. Shaikhutdinov H.J. Freund (2003) Surf. Sci. 546 L813 Occurrence Handle10.1016/j.susc.2003.09.025

    Article  Google Scholar 

  15. Q. Fu T. Wagner S. Olliges H.D. Carstanjen (2005) J. Phys. Chem. 109 944

    Google Scholar 

  16. G.A. Somorjai

  17. J.C. Frost (1988) Nature 334 577 Occurrence Handle10.1038/334577a0

    Article  Google Scholar 

  18. S.V. Didziulis K.D. Butcher S.L. Cohen E.I. Solomon (1989) J. Am. Chem. Soc. 111 7110 Occurrence Handle10.1021/ja00200a033

    Article  Google Scholar 

  19. G. Thornton S. Crook Z. Chang (1998) Surf. Sci. 415 122 Occurrence Handle10.1016/S0039-6028(98)00518-4

    Article  Google Scholar 

  20. J. Yoshihara C.T. Campbell (1998) Surf. Sci. 407 256 Occurrence Handle10.1016/S0039-6028(98)00201-5

    Article  Google Scholar 

  21. B. Meyer D. Marx (2004) Phys. Rev. B 69 235420 Occurrence Handle10.1103/PhysRevB.69.235420

    Article  Google Scholar 

  22. G. Kresse O. Dulub U. Diebold (2003) Phys. Rev. B 68 245409 Occurrence Handle10.1103/PhysRevB.68.245409

    Article  Google Scholar 

  23. J. Yoshihara J.M. Campbell C.T. Campbell (1998) Surf. Sci. 406 235 Occurrence Handle10.1016/S0039-6028(98)00117-4

    Article  Google Scholar 

  24. J. Wang and E. Johnson, U. Burghaus, Chem. Phys. Lett. (in press)

  25. J. Wang B. Hokkanen U. Burghaus (2005) Surf. Sci. 577 158 Occurrence Handle10.1016/j.susc.2004.12.030

    Article  Google Scholar 

  26. K.H. Ernst D. Schlatterbeck K. Christmann (1999) Phys. Chem. Chem. Phys. 1 4105 Occurrence Handle10.1039/a904169i

    Article  Google Scholar 

  27. J. Wang U. Burghaus (2005) J. Chem. Phys. 122 044705-11

    Google Scholar 

  28. D.W. Goodmann (1996) J. Chem. Phys. 100 13090 Occurrence Handle10.1021/jp953755e

    Article  Google Scholar 

  29. U. Burghaus J. Ding W.H. Weinberg (1998) Surf. Sci. 396 273 Occurrence Handle10.1016/S0039-6028(97)00676-6

    Article  Google Scholar 

  30. C. Xu B.E. Koel M.T. Paffett (1994) Langmuir 10 166 Occurrence Handle10.1021/la00013a025

    Article  Google Scholar 

  31. D.A. King M.G. Wells (1972) Surf. Sci. 29 454 Occurrence Handle10.1016/0039-6028(72)90232-4

    Article  Google Scholar 

  32. F. Rumpf H. Poppa M. Boudard (1988) Langmuir 4 722 Occurrence Handle10.1021/la00081a038

    Article  Google Scholar 

  33. J. Stephan U. Burghaus (2002) Surf. Sci. 507–510 736 Occurrence Handle10.1016/S0039-6028(02)01345-6

    Article  Google Scholar 

  34. H.B. Nielsen U. Burghaus G. Broström E. Matthias (1990) Surf. Sci. 234 L271 Occurrence Handle10.1016/0039-6028(90)90552-J

    Article  Google Scholar 

  35. S.J. Tauster S.C. Fung R.T.K. Baker J.A. Horsley (1981) Science 211 1121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Burghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Funk, S. & Burghaus, U. Indications for Metal-support Interactions: The Case of CO2Adsorption on Cu/ZnO(0001). Catal Lett 103, 219–223 (2005). https://doi.org/10.1007/s10562-005-7157-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7157-3

KEY WORDS

Navigation