Skip to main content
Log in

Synthesis and Characterization of Dendrimer-Templated Mesoporous Oxidation Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report here the use of 4th and 5th generation dendrimers poly(propylene)imine (CU-D32 and CU-D64) as templating agents for the synthesis of mesoporous titanosilicate and vanadosilicate oxidation catalysts via solgel techniques. The physical properties of these mesoporous materials were characterized by TGA, BET, PXD and SEM/EDX analyses and these showed that the transition metals are evenly distributed throughout these silicates, which have interconnected spherical pores (approx. 12Å in diameter) and high surface areas of about 650m2g−1. Kinetic studies showed that all transition metal-doped catalysts were highly selective at oxidizing cyclohexene to the corresponding epoxide. Additionally, CU-D64-templated catalysts were more catalytically active for cyclohexene epoxidation than CU-D32-templated catalysts as a result of differences in pore size. All CU-D64-templated catalysts exhibited epoxidation catalytic activity comparable to that of titanium doped MCM-41 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. W. C. E. Arends and R. A. Sheldon, Appl. Catal. A Gen. 212 (2001) 175.

    Google Scholar 

  2. R. A. Sheldon and J. Dakka, Catal. Today 19 (1994) 215.

    Google Scholar 

  3. R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, (Academic Press, New York, 1981).

    Google Scholar 

  4. R. A. Sheldon, Chemtech (1991) 566.

  5. G. Centi and M. Misono, Catal. Today 41 (1998) 287.

    Google Scholar 

  6. J. S. Rafelt and J. H. Clark, Catal. Today 57 (2000) 33.

    Google Scholar 

  7. M. G. Clerici, Topics Catal. 13 (2000) 373.

    Google Scholar 

  8. N. N. Trukhan, V. N. Romannikov, A. N. Shmakov, M. P. Vanina, E. A. Paukshtis, V. I. Bukhtiyarov, V. V. Kriventsov, I. Yu. Danilov and O. A. Kholdeeva, Micropor. Mesopor. Mat. 59 (2192) 73.

    Google Scholar 

  9. A. Tuel and L. G. Hubert-Pfalzgraf, J. Catal. 217 (2192) 343.

    Google Scholar 

  10. P. T. Tanev, M. Chibwe and T. Pinnavaia, Nature 368 (1994) 321.

    PubMed  Google Scholar 

  11. L. Y. Chen, G. K. Chuah and S. Jaenicke, Catal. Lett. 50 (1998) 107.

    Google Scholar 

  12. A. Corma, Chem. Rev. 97 (1997) 2373.

    PubMed  Google Scholar 

  13. A. Sayari, Chem. Mater. 8 (1996) 1840.

    Google Scholar 

  14. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Seonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.

    Google Scholar 

  15. W. Zhang, M. Froba, J. Wang, P. T. Tanev, J. Wong and T. J. Pinnavaia, J. Am. Chem. Soc. 118 (1996) 9164.

    Google Scholar 

  16. K. A. Koyano and T. Tatsumi, Micropor. Mater. 10 (1997) 259.

    Google Scholar 

  17. A. Vinu, J. Dedecek, V. Murugesan and M. Hartmann, Chem. Mater. 14 (2002) 2433.

    Google Scholar 

  18. L. X. Dai, K. Tabata, E. Suzuki and T. Tatsumi, Chem. Mater. 13 (2001) 208.

    Google Scholar 

  19. L. Y. Chen, G. K. Chuah and S. Jaenicke, Catal. Lett. 50 (1998) 107.

    Google Scholar 

  20. R. D. Oldroyd, G. Sankar, J. M. Thomas and D. Özkaya, J. Phys. Chem. B 102 (1998) 1849.

    Google Scholar 

  21. C. Howard, The Synthesis and Catalytic Properties of Novel Heterogeneous Oxidation Catalysts. PhD Dissertation (Clemson University, Clemson, SC, 2000).

    Google Scholar 

  22. T. Blasco, A. Corma, M. T. Navarro and J. P. Pariente, J. Catal. 156 (1995) 65.

    Google Scholar 

  23. G. Tasi, I. Pálinkó, Ñ. Molnár and I. Hannus, J. Mol. Struct. (THEOCHEM) 666 -667 (2192) 69.

    Google Scholar 

  24. P. B. Weisz, Pure Appl. Chem. 52 (1980) 2091.

    Google Scholar 

  25. P. B. Weisz, ACS Symp. Ser. 738 (1999) 18.

    Google Scholar 

  26. S. M. Csicsery, Pure Appl. Chem. 58 (1986) 841.

    Google Scholar 

  27. S. M. Csicsery, Stud. Surf. Sci. Catal. 94 (1995) 1.

    Google Scholar 

  28. G. Larsen, E. Lotero and M. Marquez, J. Phys. Chem. B. [vn104] (2000) 4840.

  29. G. Larsen, E. Lotero and M. Marquez, J. Mater. Res. 15 (2000) 1842.

    Google Scholar 

  30. G. Larsen, E. Lotero and M. Marquez, Chem. Mater. 12 (2000) 1513.

    Google Scholar 

  31. G. Larsen and R. Velarde-Ortiz, Chem. Mater. 14 (2002) 858.

    Google Scholar 

  32. A. Gong, Y. Chen, X. Zhang, H. Liu, C. Chen and F. Xi, J. Appl. Polym. Sci. 78 (2000) 2186.

    Google Scholar 

  33. G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn. 16 (1983) 470.

    Google Scholar 

  34. P. Wu and T. Tatsumi, Chem. Mater. 14 (2002) 1657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, M.C., Adisa, B. & Bruce, D.A. Synthesis and Characterization of Dendrimer-Templated Mesoporous Oxidation Catalysts. Catalysis Letters 98, 29–36 (2004). https://doi.org/10.1007/s10562-004-6444-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-6444-8

Navigation