Skip to main content
Log in

Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst for Three-Component Indazolophtalazine Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A zwitterionic amino acid-like N-propyliminodiacetic acid (PIDA) organocatalyst supported to a heterogeneous surface (SBA-15/PIDA) based on iminodiacetic acid and mesoporous SBA-15, respectively was synthesized. The mesoporous hybrid catalyst was successfully characterized by SEM, TEM, TGA, FTIR, and EDS and employed in the three-component reaction of dimedone, aldehydes and phtalhydrazide for the synthesis of indazolophtalazinetrione. SBA-15/PIDA exhibited excellent catalytic activity in the reaction and showed highly recyclable and recoverable features in consecutive reaction runs. According to ab initio calculations, the recoverability of SBA-15/PIDA catalyst is attributed to the strong covalent bonding between PIDA and SBA-15.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rostamnia S, Doustkhah E (2014) RSC Adv 4:28238–28248

    Article  CAS  Google Scholar 

  2. Alam MN, Roy N, Mandal D, Begum NA (2013) RSC Adv 3:11935–11956

    Article  CAS  Google Scholar 

  3. Carril M, SanMartin R, Dominguez E, Tellitu I (2007) Green Chem 9:315–317

    Article  CAS  Google Scholar 

  4. Elwahy AHM, Shaaban MR (2015) RSC Adv 5:75659–75710

    Article  CAS  Google Scholar 

  5. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Chem Soc Rev 43:6011–6061

    Article  CAS  PubMed  Google Scholar 

  6. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Chem Soc Rev 43:3480–3524

    Article  CAS  PubMed  Google Scholar 

  7. Tucker JL (2006) Org Process Res Dev 10:315–319

    Article  CAS  Google Scholar 

  8. Ferrero L, Sangiorgi G, Ferrini BS, Perrone MG, Moscatelli M, D’Angelo L, Rovelli G, Ariatta A, Truccolo R, Bolzacchini E (2013) Environ Sci Technol 47:3856–3864

    Article  CAS  PubMed  Google Scholar 

  9. Doustkhah E, Rostamnia S, Hassankhani A (2016) J Porous Mater 23:549–556

    Article  CAS  Google Scholar 

  10. Rostamnia S, Doustkhah E (2016) J Mol Catal A 411:317–324

    Article  CAS  Google Scholar 

  11. Doustkhah E, Rostamnia S (2016) Mater Chem Phys 177:229–235

    Article  CAS  Google Scholar 

  12. Doustkhah E, Rostamnia S, Imura M, Ide Y, Mohammadi S, Hyland CJT, You J, Tsunoji N, Zeynizadeh B, Yamauchi Y (2017) RSC Adv 7:56306–56310

    Article  CAS  Google Scholar 

  13. Sun LB, Liu XQ, Zhou HC (2015) Chem Soc Rev 44:5092–5147

    Article  CAS  PubMed  Google Scholar 

  14. Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465–11471

    Article  CAS  Google Scholar 

  15. Zhao D, Sun J, Li Q, Stucky GD (2000) Chem Mater 12:275–279

    Article  CAS  Google Scholar 

  16. Han YJ, Kim JM, Stucky GD (2000) Chem Mater 12:2068–2069

    Article  CAS  Google Scholar 

  17. Lashaki MJ, Sayari A (2018) Chem Eng J 334:1260–1269

    Article  CAS  Google Scholar 

  18. Jing F, Katryniok B, Paul S, Fang L, Liebens A, Shen M, Hu B, Dumeignil F, Pera-Titus M (2017) ChemCatChem 9:258–262

    Article  CAS  Google Scholar 

  19. Castanheiro J, Fonseca I, Ramos A, Vital J (2017) Microporous Mesoporous Mater 249:16–24

    Article  CAS  Google Scholar 

  20. Rostamnia S, Doustkhah E, Zeynizadeh B (2016) Microporous Mesoporous Mater 222:87–93

    Article  CAS  Google Scholar 

  21. Rostamnia S, Doustkhah E (2015) Synlett 26:1345–1347

    Article  CAS  Google Scholar 

  22. Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Green Chem 18:881–922

    Article  CAS  Google Scholar 

  23. Rostamnia S, Doustkhah E, Nuri (2013) J Fluor Chem 153:1–6

    Article  CAS  Google Scholar 

  24. Rostamnia S, Doustkhah E (2014) Tetrahedron Lett 55:2508–2512

    Article  CAS  Google Scholar 

  25. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  26. Doustkhah E, Rostamnia S, Hossieni HG, Luque R (2017) ChemistrySelect 2:329–334

    Article  CAS  Google Scholar 

  27. Mulik A, Chandam D, Patil P, Patil D, Jagdale S, Sankpal S, Deshmukh M (2015) J Heterocycl Chem 52:931–937

    Article  CAS  Google Scholar 

  28. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  32. Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  33. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski RJ (2013) Comput Chem 34:2557–2567

    Article  CAS  Google Scholar 

  34. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski RJ (2016) Comput Chem 37:1030–1035

    Article  CAS  Google Scholar 

  35. Liu S, Pedersen LG (2009) J Phys Chem A 113:3648–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Assadi MHN, Sahajwalla V (2014) Chem Phys 443:107–111

    Article  CAS  Google Scholar 

  37. Sayyafi M, Seyyedhamzeh M, Khavasi HR, Bazgir A (2008) Tetrahedron 64:2375–2378

    Article  CAS  Google Scholar 

  38. Doustkhah E, Rostamnia S (2016) J Colloid Interface Sci 478:280–287

    Article  CAS  PubMed  Google Scholar 

  39. Tayebee R, Jomei M, Maleki B, Razi MK, Veisi H, Bakherad M (2015) J Mol Liq 206:119–128

    Article  CAS  Google Scholar 

  40. Hasaninejed A, Kazerooni MR, Zare A (2012) Catal Today 196:148–155

    Article  CAS  Google Scholar 

  41. Chate AV, Bhadke PK, Khande MA, Sangshetti JN, Gill CH (2017) Chin Chem Lett 28:1577–1582

    Article  CAS  Google Scholar 

  42. Motokura K, Tada M, Iwasawa Y (2008) Chem Asian J 3:1230–1236

    Article  CAS  PubMed  Google Scholar 

  43. Corma A, Boronat M, Climent MJ, Iborra S, Montón R, Sabater MJ (2011) Phys Chem Chem Phys 13:17255–17261

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Wang Y, Wang Q, Li J, Yang S, Zhu Z (2014) Sci Rep 4:6475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ali Baghban acknowledges Payame Nur University for the financial support of the research. The publication has been prepared with support of RUDN University Program 5-100. The computational resources were provided by the Integrated Materials Design Centre at the University of New South Wales, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esmail Doustkhah, Ali Baghban or M. Hussein N. Assadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doustkhah, E., Baghban, A., Assadi, M.H.N. et al. Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst for Three-Component Indazolophtalazine Synthesis. Catal Lett 149, 591–600 (2019). https://doi.org/10.1007/s10562-018-2643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2643-6

Keywords

Navigation