Skip to main content
Log in

CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

In situ IR measurements for CO adsorption and preferential CO oxidation in H2-rich gases over Ag/SiO2 catalysts are presented in this paper. CO adsorbed on the Ag/SiO2 pretreated with oxygen shows a band centered around 2169 cm−1, which is assigned to CO linearly bonded to Ag+ sites. The amount of adsorbed CO on the silver particles (manifested by an IR band at 2169 cm−1) depends strongly on the CO partial pressure and the temperature. The steady-state coverage on the Ag surface is shown to be significantly below saturation, and the oxidation of CO with surface oxygen species is probably via a non-competitive Langmuir–Hinshelwood mechanism on the silver catalyst which occurs in the high-rate branch on a surface covered with CO below saturation. A low reactant concentration on the Ag surface indicates that the reaction order with respect to Pco is positive, and the selectivity towards CO2 decreases with the decrease of Pco. On the other hand, the decrease of the selectivity with the reaction temperature also reflects the higher apparent activation energy for H2 oxidation than that for CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tamaru (1997) Appl. Catal. A 151 167 Occurrence Handle1:CAS:528:DyaK2sXhtV2kt7o%3D

    CAS  Google Scholar 

  2. J.G. Serafin A.C. Liu S.R. Seyedmonir (1998) J. Mol. Catal. A 131 157 Occurrence Handle1:CAS:528:DyaK1cXjsFClurg%3D

    CAS  Google Scholar 

  3. G.G. Xia Y.G. Yin W.S. Willis J.Y. Wang S.L. Suib (1999) J. Catal. 185 91 Occurrence Handle1:CAS:528:DyaK1MXktVSlsL4%3D

    CAS  Google Scholar 

  4. S. Imamura H. Yamada K. Utani (2000) Appl. Catal. A 192 226

    Google Scholar 

  5. K. Song S. Kang S.D. Kim (1997) Catal. Lett. 49 65 Occurrence Handle1:CAS:528:DyaK1cXkvVOiuw%3D%3D

    CAS  Google Scholar 

  6. Q.P. Sun Y.J. Zong M.F. Luo J. Zhenjing (2000) Normal University 23 271

    Google Scholar 

  7. S. Imamura H.R. Sawada K. Uemura S. Ishida (1988) J. Catal. 109 198 Occurrence Handle1:CAS:528:DyaL1cXhtF2kur4%3D

    CAS  Google Scholar 

  8. Z.P. Qu M.J. Cheng C. Shi X.H. Bao (2002) Chinese J. Catal. 23 460 Occurrence Handle1:CAS:528:DC%2BD38Xot1Ogsb4%3D

    CAS  Google Scholar 

  9. C. Güldür F. Balikci (2002) Int. J. Hydrogen Energy 27 219

    Google Scholar 

  10. Z.P. Qu M.J. Cheng X.L. Dong X.H. Bao (2004) Catal. Today 247 93–95

    Google Scholar 

  11. Z.P. Qu, M.J. Cheng, W.X. Huang and X.H. Bao, J. Catal. in press

  12. K. Eberle, B. Rohland, J. Scholta and R. Stroebel. German Patent 19,615,562 C1 (issued 9/10/1997)

  13. M.J. Kahlich H.A. Gasteiger R.J. Behm (1997) J. Catal. 171 93 Occurrence Handle1:CAS:528:DyaK2sXntVKmsrk%3D

    CAS  Google Scholar 

  14. S. Kandoi A.A. Gokhale L.C. Grabow J.A. Dumesic M. Mavrikakis (2004) Catal. Lett. 93 93 Occurrence Handle1:CAS:528:DC%2BD2cXhsVGqs7k%3D

    CAS  Google Scholar 

  15. T. Engel G. Ertl (1979) Adv. Catal. 28 1 Occurrence Handle10.1016/S0360-0564(08)60133-9 Occurrence Handle1:CAS:528:DyaL3cXhtlKjsr4%3D

    Article  CAS  Google Scholar 

  16. M.J. Kahlich M.M. Schubert M. Hüttner M. Noeske H.A. Gasteiger R.J. Behm (1997) NoChapterTitle O. Savadogo P.R. Roberge (Eds) New Materials for Fuel Cells and Modern Battery Systems II Ecole Polytechnique de Montreal Montreal 642

    Google Scholar 

  17. K. Tamaru, J. Mol. Catal. A 163 (2000) 3; G.W. Keulks and C.C. Chang, J. Phys. Chem. 74 (1970) 2590

  18. A.F. Benton R.T. Bell (1934) J. Am. Chem. Soc. 56 501 Occurrence Handle1:CAS:528:DyaA2cXisFWitw%3D%3D

    CAS  Google Scholar 

  19. M.J. Kahlich H.A. Gasteiger R.J. Behm (1999) J. Catal. 182 430 Occurrence Handle1:CAS:528:DyaK1MXhs1Sgsrc%3D

    CAS  Google Scholar 

  20. U. Burghaus H. Conrad (1997) Surf. Sci. 370 17 Occurrence Handle1:CAS:528:DyaK28XnsFehurg%3D

    CAS  Google Scholar 

  21. A. Pestryakov A. Davydov A. Kurina (1988) Russ. J. Phys. Chem. 62 1813 Occurrence Handle1:CAS:528:DyaL1cXlsFOitL4%3D

    CAS  Google Scholar 

  22. J. Baumann R. Beer B. Calzaferri B. Waldeck (1989) J. Phys. Chem. 93 2292 Occurrence Handle1:CAS:528:DyaL1MXhsVeku7g%3D

    CAS  Google Scholar 

  23. Y.Y. Huang (1974) J. Catal. 32 482 Occurrence Handle1:CAS:528:DyaE2cXhtVSmtrk%3D

    CAS  Google Scholar 

  24. K. Hadjiivanov E. Vassileva M. Kantcheva D. Klissurski (1991) Mater. Chem. Phys. 28 367

    Google Scholar 

  25. T. Engel and G. Ertl, in: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodru. (eds.), 4(Elsevier Scienti.c, Amsterdam, 1982) pp. 73.

  26. M.M. Schubert M.J. Kahlich H.A. Gasteiger R.J. Behm (1999) J. Power Source 84 75

    Google Scholar 

  27. Y. Zhang (1982) Inorg. Chem. 21 3886 Occurrence Handle1:CAS:528:DyaL38Xls12htrk%3D

    CAS  Google Scholar 

  28. Q. Xu Y. Souma (1998) Top. Catal. 6 17 Occurrence Handle1:CAS:528:DyaK1cXksFSltb4%3D

    CAS  Google Scholar 

  29. M. Rocca L. Vattuone L. Savio F. Bauatierde Mongeot U. Valbusa (2001) Phys. Rev. B 63 081404

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhe Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Z., Zhou, S., Wu, W. et al. CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study. Catal Lett 101, 21–26 (2005). https://doi.org/10.1007/s10562-004-3742-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-004-3742-0

Keywords

Navigation