Skip to main content

Advertisement

Log in

Osteogenic effect of electromagnetic fields on stem cells derived from rat bone marrow cultured in osteogenic medium versus conditioned medium in vitro

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Objectives

This study assessed possible osteogenic differentiation caused by electromagnetic fields (EMF) on rat bone-marrow-derived stem cells (rBMSCs) cultured in osteogenic medium (OM) or in human adipose-stem cell-conditioned medium (hADSC-CM).

Materials and Methods

The rBMSCs were divided into negative and positive control groups, cultured in α-MEM plus 10% FBS or OM respectively. CM and CM + EMF  groups, cultured cells in hADSCs-CM or exposed to EMF (50 Hz, 1 mT) for 30 min/day plus hADSCs-CM, respectively. Cells from the OM + EMF were simultaneously cultured in OM and exposed to EMF. Osteogenesis was investigated through alkaline phosphatase activity, alizarin red staining and real-time PCR.

Results

A meaningfully higher level of ALP activity was observed in the OM + EMF group compared to the other groups. There was a considerable increase in Runx2 expression in the CM + EMF group compared to the positive control and CM groups and a significant increase in Runx2 expression in the OM + EMF in comparison with all other groups after 21 days. Runx2 expression increased significantly in the CM, CM + EMF and positive control groups on day 21 compared to the same groups on day 14. From days 14–21, Ocn expression increased in the CM and CM + EMF groups, but both groups showed a significant decrease compared to the positive controls. CM and EMF had no effect on Ocn expression. On day 21, Ocn expression was significantly higher in the OM + EMF group than in the positive control group.

Conclusion

The synergistic effect of EMF and OM increased the expression of Runx2 and Ocn in rBMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azadian E, Arjmand B et al (2019) A comprehensive overview on utilizing electromagnetic fields in bone regenerative medicine. Electromagn Biol Med 38(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Azhdari Tafti Z, Mahmoodi M et al (2018) Conditioned media derived from human adipose tissue mesenchymal stromal cells improves primary hepatocyte maintenance. Cell J 20(3):377–387

    PubMed  PubMed Central  Google Scholar 

  • Campagnoli C, Roberts IA et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402

    Article  CAS  PubMed  Google Scholar 

  • Chang WH, Chen LT et al (2004) Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25(6):457–465

    Article  PubMed  Google Scholar 

  • Chang W, Kim R et al (2015) Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of icam-1 targeted-microrna-221. Mol Cells 38(7):643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilogo IH, Fiolin J (2019) Role of mesenchymal stem cell-conditioned medium (msc-cm) in the bone regeneration: a systematic review from 2007–2018. Ann Res Rev Biol. https://doi.org/10.9734/arrb/2019/v31i230045

    Article  Google Scholar 

  • Diniz P, Soejima K et al (2002) Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7(1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Ehnert S, Falldorf K et al (2015) Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure - Clinical implication possible. Bone Rep 3:48–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito M, Lucariello A et al (2012) Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields. In Vivo 26(2):299–304

    PubMed  Google Scholar 

  • Fini M, Torricelli P et al (2008) Effect of pulsed electromagnetic field stimulation on knee cartilage, subchondral and epyphiseal trabecular bone of aged Dunkin Hartley guinea pigs. Biomed Pharmacother 62(10):709–715

    Article  PubMed  Google Scholar 

  • Han Y, Li X et al (2019) Mesenchymal stem cells for regenerative medicine. Cells 8(8):886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan HT, El-Sheemy M (2004) Adult bone-marrow stem cells and their potential in medicine. J R Soc Med 97(10):465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo JS, Choi Y et al (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37(1):115–125

    Article  PubMed  Google Scholar 

  • Hwang YS, Randle WL et al (2006) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Eng 12(6):1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Jansen JH, van der Jagt OP et al (2010) Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 11(1):188

    Article  PubMed  PubMed Central  Google Scholar 

  • Jazayeri M, Shokrgozar MA et al (2017) Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions. Cell J 19(1):34–44

    PubMed  Google Scholar 

  • Kang KS, Hong JM et al (2013) Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med 45(1):e6

    Article  PubMed  PubMed Central  Google Scholar 

  • Katagiri W, Osugi M et al (2013) Novel cell-free regeneration of bone using stem cell-derived growth factors. Int J Oral Maxillofac Implants 28(4):1009–1016

    Article  PubMed  Google Scholar 

  • Katagiri W, Kawai T et al (2017) Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells. Maxillofac Plast Reconstr Surg 39(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Landry PS, Sadasivan KK et al (1997) Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthop Relat Res 338:262–270

    Article  Google Scholar 

  • Leone L, Podda MV et al (2015) Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis. Front Cell Neurosci 9:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim K, Hexiu J et al (2013) Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int 2013:296019

    PubMed  PubMed Central  Google Scholar 

  • Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE 9(9):e107001

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo F, Hou T et al (2012) Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics 35(4):e526-531

    Article  PubMed  Google Scholar 

  • Maxson S, Burg KJ (2008) Conditioned media cause increases in select osteogenic and adipogenic differentiation markers in mesenchymal stem cell cultures. J Tissue Eng Regen Med 2(2–3):147–154

    Article  CAS  PubMed  Google Scholar 

  • Maziarz A, Kocan B et al (2016) How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther 7(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazini L, Rochette L et al (2019a) Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 20(10):2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noverina R, Widowati W et al (2019) Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). Clin Nutr Exp 24:34–44

    Article  Google Scholar 

  • Osugi M, Katagiri W et al (2012) Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A 18(13–14):1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petecchia L, Sbrana F et al (2015) Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep 5:13856

    Article  PubMed  PubMed Central  Google Scholar 

  • Safari M, Jadidi M et al (2016) Proliferation and differentiation of rat bone marrow stem cells by 400μT electromagnetic field. Neurosci Lett 612:1–6

    Article  CAS  PubMed  Google Scholar 

  • Sagaradze G, Grigorieva O et al (2019) conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int J Mol Sci 20(7):1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saulnier N, Lattanzi W et al (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13:71–78

    PubMed  Google Scholar 

  • Schweizer R, Tsuji W et al (2015) The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells Int 2015:120949

    Article  PubMed  PubMed Central  Google Scholar 

  • Stojanović S, Najman S (2019) The effect of conditioned media of stem cells derived from lipoma and adipose tissue on macrophages’ response and wound healing in indirect co-culture system in vitro. Int J Mol Sci 20(7):1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Zhou H et al (2012) Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating runx2. Cells Tissues Organs 196(6):510–522

    Article  CAS  PubMed  Google Scholar 

  • Tamari M, Nishino Y et al (2013) Acceleration of wound healing with stem cell-derived growth factors. Int J Oral Maxillofac Implants 28(6):e369-375

    Article  PubMed  Google Scholar 

  • Tsai MT, Chang WH et al (2007) Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 28(7):519–528

    Article  CAS  PubMed  Google Scholar 

  • Tsai MT, Li WJ et al (2009) Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J Orthop Res 27(9):1169–1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CY, Yang HB et al (2012) Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J Tissue Eng Regen Med 6(7):559–569

    Article  CAS  PubMed  Google Scholar 

  • Wang KX, Xu LL et al (2015) The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS ONE 10(3):e0120593

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Xiaolin H et al (2008) Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagn Biol Med 27(3):298–311

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tao C et al (2010) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31(4):277–285

    CAS  PubMed  Google Scholar 

  • Yu JZ, Wu H et al (2014) Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system. J Huazhong Univ Sci Technolog Med Sci 34(2):247–253

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Zhang X et al (2012) Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys Ther 92(9):1208–1219

    Article  PubMed  Google Scholar 

  • Zhong S, He X et al (2019) Conditioned medium enhances osteogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Tissue Eng Regen Med 16(2):141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Ming LG et al (2011) Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49(4):753–761

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Liu T et al (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct Cell Biochem Modul Act Agents Dis 26(6):664–675

    CAS  Google Scholar 

  • Zuk PA, Zhu M et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Biological School of Damghan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Haji Ghasem Kashani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirahmadi, F., Haji Ghasem Kashani, M., Nasiri, M. et al. Osteogenic effect of electromagnetic fields on stem cells derived from rat bone marrow cultured in osteogenic medium versus conditioned medium in vitro. Cell Tissue Bank 24, 317–328 (2023). https://doi.org/10.1007/s10561-022-10034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-022-10034-4

Keywords

Navigation