Skip to main content

Advertisement

Log in

Effect of different cryopreservation regimens on Ehrlich carcinoma growth

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The freezing rate is a decisive factor in determining the purpose of using low temperatures, i.e., for cryoablation or cryobanking of tumor cells. The research aim was to determine effect of different cryopreservation regimens on Ehrlich carcinoma (EC) growth in vivo and subpopulation composition of the formed ascites. The previously cryopreserved with slow and rapid rates EC cells were cultured in peritoneal cavity (PC) of mice for 7 days. Absolute number of cells in the PC, the subpopulation composition of tumor with flow cytometry using CD44 and CD24 markers were determined. Immediately after warming, a significant redistribution of EC subpopulation composition with a decreased content of the most tumorigenic CD44high cells after both freezing regimens was found. Culturing in vivo for 7 days contributed to the restoration of EC subpopulation composition, but with some a decrease in the tumor growth intensity when slow cooling was used. Rapid cooling contributed to significant inhibition of tumor growth with a reduced number of CD44+ and increased CD24+ cells. None of the cryopreservation regimens resulted in a complete elimination of tumorigenic CD44high tumor cells. The freezing rate determines the preservation of the subpopulation composition of the EC and intensity of its growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayre DC, Christian SL (2016) CD24: a rheostat that modulates cell surface receptor signaling of diverse receptors. Front Cell Dev Biol 4:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischof JC, Smith DJ, Pazhayannur PV, Manivel C, Hulbert J, Roberts KP (1997) Cryosurgery of dunning AT-1 rat prostate tumor: thermal, biophysical and viability response at the cellular and tissue level. Cryobiology 34:42–69

    Article  CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • De Francesco EM, Sotgia F, Lisanti MP (2018) Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 475(9):1611–1634

    Article  CAS  PubMed  Google Scholar 

  • De Hamer PCW, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S (2007) The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene 27(14):2091–2096

    Article  CAS  Google Scholar 

  • Diabina OA, Ostankov MV, Bondarovich NA, Goltsev AN (2014) Freeze-thawing-cycle-dependent cryoability of Ehrlich carcinoma stemness-like cells. Proceedings of 50th Anniversary Celebration Annual Scientific Conference & AGM “Freezing biological time”, p. 73. London, UK

  • Edwards MJ, Broadwater R, Tafra L, Jarowenki D, Mabry C, Beitsch P, Whitworth P, Martin RC, Oetting L (2004) Progressive adoption of cryoablative therapy for breast fibroadenoma in community practice. Am J Surg 188(3):221–224

    Article  PubMed  Google Scholar 

  • Evdokimova NYu (2008) Hyaluronic acid, CD44 receptor and their role in complications of diabetes mellitus. Ukr Biochem J 5:5–44

    Google Scholar 

  • Fedets OI (1987) Effect of deep cold anabiosis on morphofunctional state of ascitic Ehrlich carcinoma cells. Scientific and Technical Progress and Fundamental Problems in Biology and Medicine, p. 54–55. Kharkov

  • Fuller B, Gonzalez-Molina J, Erro E, De Mendonca J, Chalmers S, Awan M, Poirier A, Selden C (2017) Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Ther Insights 3(5):359–378

    Article  Google Scholar 

  • Goltsev AN, Babenko NN, Dubrava TG, Ostankov MV, Shatneva OM (2006) Modification of the state of bone marrow hematopoietic cells after cryopreservation. Int J Refrig 29(3):358–367

    Article  CAS  Google Scholar 

  • Goltsev AM, Safranchuk OV, Bondarovich MO, Ostankov MV, Babenko NN, Gayevskaya Yu A, Chelombitko OV (2012) Methodical approaches to the stabilization of structural and functional states of cryopreserved cells of Ehrlich carcinoma. Rep Nat Acad Sci Ukr 8:115–122 (Ukrainian)

    Google Scholar 

  • Goltsev AN, Babenko NN, Gaevskaya YuA, Chelombitko OV, Dubrava TG, Bondarovich NA, Ostankov MV, Klochkov VK, Kavok NS, Malyukin YuV, Vinnik YuA (2015) Application of nanoparticles based on rare earth orthovanadates to inactivate Ehrlich carcinoma growth. Biotechnol Acta 8(4):113–121

    Article  CAS  Google Scholar 

  • Goltsev AN, Babenko NN, Gaevskaya YA, Bondarovich NA, Dubrava TG, Ostankov MV, Chelombitko OV, Malyukin YV, Klochkov VK, Kavok NS (2017a) Nanotechniques inactivate cancer stem cells. Nanoscale Res Lett 12(1):415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goltsev AN, Bondarovich NA, Babenko NN, Gaevskaya YuA, Dubrava TG, Chelombitko OV, Ostankov MV (2017b) Contribution of Ehrlich carcinoma subpopulation composition in maintaining tumor growth. Exp Oncol 39(3):240

    Google Scholar 

  • Goltsev AN, Bondarovich NA, Babenko NN, Gaevskaya YA, Ostankov MV, Dubrava TG (2018) Freezing conditions determine functional potential of tumor cells. Cryobiology 85:168

    Google Scholar 

  • Hayashida K, Bartlett AH, Chen Y, Park PW (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 293(6):925–937

    Article  CAS  Google Scholar 

  • Hol’tsev AM, Safranchuk OV, Bondarovich MO, Ostankov MV (2011) Change in cryolability of tumour stem cells depending on adenocarcinoma growth phase. Fiziol Zh 57(4):68–76 (Ukrainian)

    PubMed  Google Scholar 

  • Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. https://doi.org/10.1155/2012/708036

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju JH, Jang K, Lee KM, Kim M, Kim J, Yi JY, Noh DY, Shin I (2011) CD24 enhances DNA damage-induced apoptosis by modulating NFκB signaling in CD44-expressing breast cancer cells. Carcinogenesis 32:1474–1483

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Busheri F, Zadorozhny V, Carrier E, Fakhrai H (2013) Molecular integrity and global gene expression of breast and lung cancer stem cells under long-term storage and recovery. Cell Tissue Bank 14(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Kiricuta IC, Risca R, Morariu VV (1979) The effect of low temperatures on the viability of Ehrlich ascites tumor cells. Morphol Embryol (Bucur) 25(4):361–364

    CAS  Google Scholar 

  • Kitagawa T, Masuda Y, Tominaga T, Kano M (2001) Cellular biology of cryopreserved allograft valves. J Med Invest 48(3–4):123–132

    CAS  PubMed  Google Scholar 

  • Koren S, Bentires-Alj M (2015) Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol Cell 60(4):537–546

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y (2017) Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 7(1):13856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9(12):1573–1586

    Article  CAS  PubMed  Google Scholar 

  • McGrath JJ, Cravalho EG, Huggins CE (1975) An experimental comparison of intracellular ice formation and freeze-thaw survival of HeLa S-3 cells. Cryobiology 12(6):540–550

    Article  CAS  PubMed  Google Scholar 

  • Munévar JC, Gutiérrez N, Jiménez NT, Lafaurie GI (2015) Evaluation of two human dental pulp stem cell cryopreservation methods. Acta Odontol Latinoam 28(2):114–121

    PubMed  Google Scholar 

  • Nurko J, Mabry CD, Whitworth P, Jarowenko D, Oetting L, Potruch T, Han L, Edwards MJ (2005) Interim results from the fibroadenoma cryoablation treatment registry. Am J Surg 190(4):647–652

    Article  PubMed  Google Scholar 

  • Ostankov MV (2007) Effect of rapid two-step freezing on bone marrow cell integrity. Probl Cryobiol Cryomed 17(3):283–289

    Google Scholar 

  • Ozaslan M, Karagoz ID, Kilic IH, Guldur ME (2011) Ehrlich ascites carcinoma. Afr J Biotechnol 10(13):2375–2378

    Google Scholar 

  • Pandita A, Aldape KD, Zadeh G, Guha A, James CD (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosom Cancer 39(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Pegg DE (2015) Principles of cryopreservation. Methods Mol Biol 1257:3–19

    Article  CAS  PubMed  Google Scholar 

  • Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946

    Article  PubMed  Google Scholar 

  • Safranchuk OV, Sirous MA, Goltsev AN (2008) Morphofunctional characteristics of cancer stem cells prior to and after cryopreservation. Probl Cryobiol Cryomed 18(1):119–123

    Google Scholar 

  • Santos KM, Maciel FP, Souza CM, Cassali GD, Thome RG, Santos HB, Ribeiro RI (2015) Evaluation of different methods of cryopreservation of Ehrlich tumor cells. Cryo Lett 36(2):68–73

    Google Scholar 

  • Sasai K, Romer JT, Lee Y, Finkelstein D, Fuller C, McKinnon PJ, Curran T (2006) Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res 66(8):4215–4222

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Yamashita T, Suzuki K, Takeichi N, Micallef M, Hosokawa M, Kobayashi H, Murata M, Arisue M (1998) Enhancement of experimental pulmonary metastasis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res 18(6A):4443–4448

    CAS  PubMed  Google Scholar 

  • Simmons RM, Ballman KV, Cox C, Carp N, Sabol J, Hwang RF, Attai D, Sabel M, Nathanson D, Kenler A, Gold L, Kaufman C, Han L, Bleznak A, Stanley Smith J, Holmes D, Fornage B, Le-Petross C, Hoda S, McCall L, Hunt KK (2016) A phase II trial exploring the success of cryoablation Therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol 23(8):2438–2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Springer T, Galfrè G, Secher DS, Milstein C (1978) monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol 8(8):539–551

    Article  CAS  PubMed  Google Scholar 

  • Strasbourg (1986) European convention for the protection of vertebrate animals used for experimental and other scientific purpose: council of Europe, p 52

  • Suyama K, Onishi H, Imaizumi A, Shinkai K, Umebayashi M, Kubo M, Mizuuchi Y, Oda Y, Tanaka M, Nakamura M, Katano M (2016) CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells. Cancer Lett 374(1):44–53

    Article  CAS  PubMed  Google Scholar 

  • Takenobu H, Yamazaki A, Hirata M, Umata T, Mekada E (2003) The stress- and inflammatory cytokine-induced ectodomain shedding of heparin-binding epidermal growth factor-like growth factor is mediated by p38 MAPK, distinct from the 12-O-tetradecanoylphorbol-13-acetate- and lysophosphatidic acid-induced signaling cascades. J Biol Chem 278(19):17255–17262

    Article  CAS  PubMed  Google Scholar 

  • Tatsutani K, Rubinsky B, Onik G, Dahiya R (1996) Effect of thermal variables on frozen human primary prostatic adenocarcinoma cells. Urology 48(3):441–447

    Article  CAS  PubMed  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6(6):425–436

    Article  CAS  PubMed  Google Scholar 

  • Wicha MS (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 10(2):105

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Hayakawa K, Hosokawa M, Kodama T, Inoue N, Tomita K, Kobayashi H (1982) Enhanced tumor metastasis in rats following cryosurgery of primary tumor. Gann 73:222–228

    CAS  PubMed  Google Scholar 

  • Zemlianskykh NG, Babijchuk LA (2016) Changes in erythrocyte surface marker CD44 during hypothermic and low temperature storage. Fiziol Zh 62(2):94–102

    Article  CAS  PubMed  Google Scholar 

  • Zykova UV, Inzhevatkin EV (2008) Change of glucose metabolism in mouse liver during growth of ascites Ehrlich carcinoma. Sib J Oncol 1:56–57

    Google Scholar 

Download references

Funding

This work was supported by funding from the National Academy of Sciences of Ukraine (No. 2.2.6.110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Goltsev.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The research was performed in accordance with the Law of Ukraine “On the Protection of Animals Against Cruelty” (No. 3447-IV, 2006), with meeting the requirements of the Institute’s Bioethics Committee, which are in accordance with the provisions of the “European Convention on the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes” (Strasbourg 1986).

Human and animal rights

This paper does not contain any investigations in humans, as well as no authors of this paper performed such studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goltsev, A.M., Bondarovych, M.O., Babenko, N.M. et al. Effect of different cryopreservation regimens on Ehrlich carcinoma growth. Cell Tissue Bank 20, 411–421 (2019). https://doi.org/10.1007/s10561-019-09780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-019-09780-9

Keywords

Navigation