Skip to main content

Advertisement

Log in

Dependence of optical attenuation coefficient and mechanical tension of irradiated human cartilage measured by optical coherence tomography

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

As banked human tissues are not widely available, the development of new non-destructive and contactless techniques to evaluate the quality of allografts before distribution for transplantation is very important. Also, tissues will be processed accordingly to standard procedures and to minimize disease transmission most tissue banks will include a decontamination or sterilization step such as ionizing radiation. In this work, we present a new method to evaluate the internal structure of frozen or glycerol-processed human cartilages, submitted to various dosis of irradiation, using the total optical attenuation coefficient retrieved from optical coherence tomography (OCT) images. Our results show a close relationship between tensile properties and the total optical attenuation coefficient of cartilages. Therefore, OCT associated with the total optical attenuation coefficient open a new window to evaluate quantitatively biological changes in processed tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akal M, Kara M (2002) The use of a homologous preserved costal cartilage in an infant with Poland’s syndrome. Eur J Cardiothorac Surg 21:146–148

    Article  PubMed  Google Scholar 

  • Braz AKS, Kyotokub BBC, Brazc R, Gomes ASL (2009) Evaluation of crack propagation in dental composites by optical coherence tomography. Dent Mater 25:74–79

    Article  CAS  PubMed  Google Scholar 

  • Brezinski ME (2006) Optical coherence tomography: principles and applications. Academic Press, London

    Google Scholar 

  • Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fugimoto JG (1996) Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology. Circulation 93(6):1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Buranachai C, Thavarungkul P, Kanatharana P, Meglinski IV (2009) Application of wavelet analysis in optical coherence tomography for obscured pattern recognition. Laser Phys Lett 6(12):892–895

    Article  Google Scholar 

  • Cheong WF, Prahl SA, Welch AJ (1999) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  • Dziedzic-Goclawska A (2000) The application of ionizing radiation to sterilize connective tissue allografts. In: Phillips GO (ed) Cell Tissue Bank 123 Author’s personal copy. Radiation and tissue banking. World Scientific, UK

  • Feng J, Hu T, Liu W, Zhang S, Tang Y, Chen R, Jiang X, Wei F (2001) The biomechanical, morphologic, and histochemical properties of the costal cartilages in children with pectus excavatum. J Pediatr Surg 36(12):1770–1776

    Article  CAS  PubMed  Google Scholar 

  • Freitas AZ, Zezell DM, Mayer MPA, Ribeiro AC, Gomes ASL, Vieira ND Jr (2009) Determination of dental decay rates with optical coherence tomography. Laser Phys 6(12):896–900

    Article  Google Scholar 

  • Freitas AZ, Magri MA, Raele MP (2010) Optical coherence tomography: development and applications. In: Duarte FJ (ed) Laser pulse phenomena and applications. InTech, Rijeka, pp 409–432

    Google Scholar 

  • Fujimoto JG (2002) Optical coherence tomography: introduction. In: Bouma B, Tearney GJ (eds) Handbook of optical coherence tomography optical coherence tomography. Marcel Dekker, New York, pp 1–40

    Google Scholar 

  • Hasler EM, Herzog W, Wu JZ, Müller W, Wyss U (1999) Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng 27(6):415–488

    CAS  PubMed  Google Scholar 

  • Herrmann JM, Pitris C, Bouma BE, Boppart SA, Jesser CA, Stamper DL, Fujimoto JG, Brezinski ME (1999) High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J Rheumatol 26(3):627–635

    CAS  PubMed  Google Scholar 

  • Herson MR, Mathor MB (2006) Bancos de Tecidos. In: Garcia VD, Abud M, Neumann J, Pestana JOM (eds) Transplantes de Órgãos e Tecidos, 2nd edn. Segmento Farma Editores Ltda, São Paulo, pp 174–185

    Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB, Michel M, Studer D (1997) Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc ResTech 37:271–284

    Article  CAS  Google Scholar 

  • Komender J, Marczynski W, Tylman D, Malczewska H, Komender A, Sladowski D (2001) Preserved tissue allograft in reconstructive surgery. Cell Tissue Bank 2:103–112

    Article  PubMed  Google Scholar 

  • Macdonald C, Meglinski IV (2011) Backscattering of circular polarized light from a disperse random medium influenced by optical clearing. Laser Phys Lett 8(4):324–328

    Article  Google Scholar 

  • Martinho Junior AC (2012) Estudos dos efeitos da radiação ionizante em cartilage costal humana por meio de tomografia por coerência óptica e termogravimentria. Dissertation, University of São Paulo

  • Martinho Junior AC, Rosifini Alves-Claro AP, Pino ES, Machado LDB, Santin SP, Mathor MB (2013) Effects of ionizing radiation and preservation on biomechanical properties of human costal cartilage. Cell Tissue Bank 14(1):117–124

    Article  Google Scholar 

  • Mason C, Markusen JF, Town MA, Dunnill P, Wang RK (2004) The potential of optical coherence tomography in the engineering of living tissue. Phys Med Biol 49(7):1097–1115

    Article  CAS  PubMed  Google Scholar 

  • Matcher SJ (2011) Practical aspects of OCT imaging in tissue engineering. Methods Mol Biol 695:261–280

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Morgan DAF, Forwood MR (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8:93–105

    Article  PubMed  Google Scholar 

  • Roberts MJ, Adams SB, Patel NA, Stampler DL, Westmore MS, Martin SD (2003) A new approach for assessing early osteoarthritis in the rat. Anal Bioanal Chem 377:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Sobol EN, Milner TE, Shekhter AB, Baum OI, Guller AE, Ignatieva NY, Omelchenko AI, Zakharkina OL (2007) Laser reshaping and regeneration of cartilage. Laser Phys Lett 4:488–502

    Article  Google Scholar 

  • Sobol EN, Zakharkina O, Baskov A, Shekhter A, Borschenko I, Guller A, Baskov V, Omelchenko A, Sviridov A (2009) Laser engineering of spine discs. Laser Phys 19:825–835

    Article  CAS  Google Scholar 

  • Strauch B, Wallach G (2003) Reconstruction with irradiated homograft costal cartilage. Plast Reconstr Surg 111(7):2405–2411

    Article  PubMed  Google Scholar 

  • Vajaradul Y (2000) Bangkok biomaterial center: 15 years experience in tissue banking. Cell Tissue Bank 1:229–239

    Article  PubMed  Google Scholar 

  • Veksler B, Kobzev E, Bonesi M, Meglinski I (2008) Application of optical coherence tomography for imaging of scaffold structure and micro-flows characterization. Laser Phys Lett 5(3):236–239

    Article  Google Scholar 

  • Wiesauer K, Pircher M, Götzinger E, Hitzenberger CK, Engelke R, Ahrens G, Grützner G, Stifter D (2006) Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials. Opt Express 14(13):5945–5953

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Guo S, Zhang J, Chen Z, Peavy GM (2006) Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography. Lasers Surg Med 38(9):852–865

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would acknowledge the International Atomic Energy Agency (IAEA), the Comissão Nacional de Energia Nuclear (CNEN), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) (Grant No. 2008/10437-9) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinho Junior, A.C., Freitas, A.Z., Raele, M.P. et al. Dependence of optical attenuation coefficient and mechanical tension of irradiated human cartilage measured by optical coherence tomography. Cell Tissue Bank 16, 47–53 (2015). https://doi.org/10.1007/s10561-013-9413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-013-9413-x

Keywords

Navigation