Skip to main content
Log in

Effect of storage temperature on gentamicin release from antibiotic-coated bone chips

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Freezing is the most common method for storing bones until use in skeletal reconstruction. However, the effect of freezing on antibiotic delivery from antibiotic-coated bone has not been evaluated. In this study, we compared antibiotic delivery in vitro from gentamicin-coated human bone stored at different temperatures. Bone chips obtained from human femur heads were chemically cleaned and mixed with gentamicin sulfate. Samples were stored for 4 months at −20 °C, 4 months at −80 °C, or evaluated immediately without freezing. Antibiotic release from the bone chips was measured using Bacillus subtilis as an indicator strain. Zones of inhibition and rates of gentamicin release were similar in all three groups. Storage at −20 and −80 °C for bone allografts has no effect on gentamicin release from chemically cleaned bone chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbour SA, King W (2003) Basic science update. The safe and effective use of allograft tissue—an update. Am J Sp Med 31(5):791–797

    Google Scholar 

  • Borkhuu B, Borowski A, Shah SA, Littleton AG, Dabney KW, Miller F (2008) Antibiotic-loaded allograft decreases the rate of acute deep wound infection after spinal fusion in cerebral palsy. Spine (Phila Pa 1976) 33(21):2300–2304. doi:10.1097/BRS.0b013e31818786ff

  • Butler AM, Morgan DA, Verheul R, Walsh WR (2005) Mechanical properties of gamma irradiated morselized bone during compaction. Biomaterials 26(30):6009–6013. doi:10.1016/j.biomaterials.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  • Buttaro MA, Gonzalez Della Valle AM, Pineiro L, Mocetti E, Morandi AA, Piccaluga F (2003) Incorporation of vancomycin-supplemented bone incorporation of vancomycin-supplemented bone allografts: radiographical, histopathological and immunohistochemical study in pigs. Acta Orthop Scand 74(5):505–513. doi:10.1080/00016470310017884

    Article  PubMed  Google Scholar 

  • Buttaro MA, Pusso R, Piccaluga F (2005) Vancomycin-supplemented impacted bone allografts in infected hip arthroplasty. Two-stage revision results. J Bone Joint Surg Br 87(3):314–319

    PubMed  CAS  Google Scholar 

  • Chapman P, Villar R (1992) The bacteriology of bone allografts. J Bone Joint Surg Br 74-B(3):398–399

    Google Scholar 

  • Coraça-Hubér DC, Fille M, Hausdorfer J, Pfaller K, Nogler M (2012) Evaluation of MBEC™-HTP biofilm model for studies of implant associated infections. J Orthop Res n/a-n/a. doi:10.1002/jor.22065

  • DePaula CA, Truncale KG, Gertzman AA, Sunwoo MH, Dunn MG (2005) Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank 6(4):287–298. doi:10.1007/s10561-005-3148-2

    Article  PubMed  CAS  Google Scholar 

  • Farrington M, Matthews I, Foreman J, Richardson KM, Caffrey E (1998) Microbiological monitoring of bone grafts: two years’ experience at a tissue bank. J Hosp Infect 38(4):261–271

    Article  PubMed  CAS  Google Scholar 

  • Haimi S, Vienonen A, Hirn M, Pelto M, Virtanen V, Suuronen R (2008) The effect of chemical cleansing procedures combined with peracetic acid-ethanol sterilization on biomechanical properties of cortical bone. Biologicals 36(2):99–104. doi:10.1016/j.biologicals.2007.06.001

    Article  PubMed  CAS  Google Scholar 

  • Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noel L, Strong DM (2012) Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop 36(3):633–641. doi:10.1007/s00264-011-1391-7

    Article  PubMed  CAS  Google Scholar 

  • Holzmann P, Niculescu-Morzsa E, Zwickl H, Halbwirth F, Pichler M, Matzner M, Gottsauner-Wolf F, Nehrer S (2010) Investigation of bone allografts representing different steps of the bone bank procedure using the CAM-model. ALTEX 27(2):97–103

    PubMed  Google Scholar 

  • Isefuku S, Joyner CJ, Simpson AH (2003) Gentamicin may have an adverse effect on osteogenesis. J Orthop Trauma 17(3):212–216

    Article  PubMed  Google Scholar 

  • Lomas R, Drummond O, Kearney JN (2000) Processing of whole femoral head allografts: a method for improving clinical efficacy and safety. Cell Tissue Bank 1(3):193–200. doi:10.1023/a:1026512312385

    Article  PubMed  Google Scholar 

  • Parrish FF (1973) Allograft replacement of all or part of the end of a long bone following excision of a tumor. J Bone Joint Surg Am 55(1):1–22

    Google Scholar 

  • Putzer D, Mayr E, Haid C, Reinthaler A, Nogler M (2011) Impaction bone grafting: a laboratory comparison of two methods. J Bone Joint Surg Br 93(8):1049–1053. doi:10.1302/0301-620X.93B8.26819

    PubMed  CAS  Google Scholar 

  • Scarborough NL (1992) Current procedures for banking allograft human bone. Orthopedics 15(10):1161–1167

    PubMed  CAS  Google Scholar 

  • Stevens CM, Tetsworth KD, Calhoun JH, Mader JT (2005) An articulated antibiotic spacer used for infected total knee arthroplasty: a comparative in vitro elution study of Simplex® and Palacos® bone cements. J Orthop Res 23(1):27–33. doi:10.1016/j.orthres.2004.03.003

    Article  PubMed  CAS  Google Scholar 

  • Stevenson S, Horowitz M (1992) The response to bone allografts. J Bone Joint Surg Am 74(6):939–950

    PubMed  CAS  Google Scholar 

  • van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ (2001) Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 72(6):557–571. doi:10.1080/000164701317268978

    Article  PubMed  Google Scholar 

  • Winkler H (2009) Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft. Int J Med Sci 6(5):247–252

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Janata O, Berger C, Wein W, Georgopoulos A (2000) In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother 46(3):423–428. doi:10.1093/jac/46.3.423

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Kaudela K, Stoiber A, Menschik F (2006) Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery—one stage revision results. Cell Tissue Bank 7(4):319–323. doi:10.1007/s10561-006-9010-3

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Stoiber A, Kaudela K, Winter F, Menschik F (2008) One stage uncemented revision of infected total hip replacement using cancellous allograft bone impregnated with antibiotics. J Bone Joint Surg Br 90-B(12):1580–1584. doi:10.1302/0301-620x.90b12.20742

  • Witsø E, Persen L, Benum P, Bergh K (2005) Cortical allograft as a vehicle for antibiotic delivery. Acta Orthopaedica 76(4):481–486. doi:10.1080/17453670510041457

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mag. Dennis Huber for technical and statistical assistance and David Putzer, MSc. for help with data collection. The authors declare no competing interests. This study was sponsored by the Department of Experimental Orthopaedics, Medical University Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Coraça-Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coraça-Huber, D.C., Hausdorfer, J., Fille, M. et al. Effect of storage temperature on gentamicin release from antibiotic-coated bone chips. Cell Tissue Bank 14, 395–400 (2013). https://doi.org/10.1007/s10561-012-9339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9339-8

Keywords

Navigation