Skip to main content
Log in

Neural network method to solve inverse problems for canopy radiative transfer models

  • Published:
Cybernetics and Systems Analysis Aims and scope

Vegetation parameter retrieval is considered as the inverse of modeling canopy radiative transfer. To solve this problem, a new computationally efficient method based on mixture density networks (MDNs) is proposed to estimate the errors of retrieved parameters for each given set of reflectances. The properties of neural networks of traditional architecture and MDNs are considered. The method is tested using a simple model and the PROSPECT leaf radiative transfer model and is validated against real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kogan, R. Stark, A. Gitelson, et al., “Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices,” Int. J. Remote Sens., 25, No. 14, 2889–2896 (2004).

    Article  Google Scholar 

  2. A. Richardson, S. Duigan, and G. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist, 153, No. 1, 185–194 (2002).

    Article  Google Scholar 

  3. N. N. Kussul’, N. I. Il’in, S. V. Skakun, and A. N. Lavrenyuk, “Estimating the state of vegetation and predicting the productivity of winter crops in Ukraine using satellite data,” in: Intern. Book Series Decision Making and Business Intelligence, Strategies and Techniques, No. 3 (2008), pp. 103–109.

  4. N. N. Kussul’, A. Yu. Shelestov, S. V. Skakun, and A. N. Kravchenko, Intelligent Computations in Processing Earth Observation Data [in Russian], Naukova Dumka, Kyiv (2007).

    Google Scholar 

  5. A. N. Kravchenko, N. N. Kussul’, E. A. Lupyan, et al., “Water resource quality monitoring using heterogeneous data and high-performance computations,” Cybern. Syst. Analysis, 44, No. 4, 616–624 (2008).

    Google Scholar 

  6. G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer, Berlin (2006).

    Google Scholar 

  7. N. Kussul, A. Shelestov, S. Skakun, and O. Kravchenko, “Data assimilation technique for flood monitoring and prediction,” Int. J. Inform. Theory Appl., 15, No. 1, 76–84 (2008).

    Google Scholar 

  8. S. Liang, Quantitative Remote Sensing of Land Surfaces, Wiley, New York (2004).

    Google Scholar 

  9. F. Baret and S. Buis, “Estimating canopy characteristics from remote sensing observations: review of methods and associated problems,” in: S. Liang (ed.), Advances in Land Remote Sensing, Springer, Dordrecht (2008), pp. 173–201.

    Chapter  Google Scholar 

  10. S. Jacquemoud and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote Sens. of Env., 34, No. 2, 75–91 (1990).

    Article  Google Scholar 

  11. J. B. Feret, C. François, G. P. Asner, et al., “PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sens. of Env., 112, No. 6, 3030–3043 (2008).

    Article  Google Scholar 

  12. T. Dawson, P. Curran, and S. Plummer, “LIBERTY — modelling the effects of leaf biochemical concentration on reflectance spectra,” Remote Sens. of Env., 65, No. 1, 50–60 (1998).

    Article  Google Scholar 

  13. W. Verhoef, “Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model,” Remote Sens. of Env., 16, No. 2, 125–141 (1984).

    Article  Google Scholar 

  14. C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau, “Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation,” Remote Sens. of Env., 105, No. 4, 313–325 (2006).

    Article  Google Scholar 

  15. E. F. Vermote, N. Z. El Saleous, and C. O. Justice, “Atmospheric correction of MODIS data in the visible to middle infrared: First results,” Remote Sens. of Env., 83, No. 1, 97–111 (2002).

    Article  Google Scholar 

  16. M. Verstraete and B. Pinty, “Designing optimal spectral indexes for remote sensing applications,” IEEE Trans. Geosci. Remote Sens., 34, No. 5, 1254–1265 (1996).

    Article  Google Scholar 

  17. T. N. Carlson and D. A. Ripley, “On the relation between NDVI, fractional vegetation cover, and leaf area index,” Remote Sens. of Env., 62, No. 3, 241–252 (1998).

    Article  Google Scholar 

  18. F. Baret and G. Guyot, “Potentials and limits of vegetation indexes for LAI and APAR assessment,” Remote Sens. of Env., 35, No. 2, 161–173 (1991).

    Article  Google Scholar 

  19. B. C. Gao, “NDWI — a normalized difference water index for remote sensing of vegetation liquid water from space,” Remote Sens. of Env., 58, No. 3, 257–266 (1996).

    Article  Google Scholar 

  20. P. Ceccato, N. Gobron, S. Flasse, et al., “Designing a spectral index to estimate vegetation water content from remote sensing data. Part 1. Theoretical approach,” Remote Sens. of Env., 82, No. 2, 188–197 (2002).

    Article  Google Scholar 

  21. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia (2005).

    MATH  Google Scholar 

  22. M. Weiss, F. Baret, R. Myneni, et al., “Investigation of a model inversion technique for the estimation of crop characteristics from spectral and directional reflectance data,” Agronomie, 20, No. 1, 3–22 (2000).

    Article  Google Scholar 

  23. Y. Knyazikhin, J. V. Martonchik, R. B. Myneni, et al., “Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data,” J. Geophys. Res., 103, 32257–32274 (1998).

    Article  Google Scholar 

  24. B. Combal, F. Baret, M. Weiss, et al., “Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem,” Remote Sens. of Env., 84, No. 1, 1–15 (2002).

    Article  Google Scholar 

  25. Z. Qingyuan, X. Xiangming, B. Braswell, et al., “Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model,” Remote Sens. of Env., 99, No. 3, 357–371 (2005).

    Article  Google Scholar 

  26. C. Bishop, Pattern Recognition and Machine Learning, Springer, New York (2006).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravchenko.

Additional information

The paper is supported by the joint project of the Science and Technology Center in Ukraine (STCU) and National Academy of Sciences of Ukraine (NASU), “Grid Technologies for Multi-Source Data Integration” (No. 4928).

Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 159–172, May–June 2009. Original article submitted January 29, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, A.N. Neural network method to solve inverse problems for canopy radiative transfer models. Cybern Syst Anal 45, 477–488 (2009). https://doi.org/10.1007/s10559-009-9106-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-009-9106-4

Keywords

Navigation