Skip to main content
Log in

A Novel Wave Reflection Model of the Human Arterial System

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

A frequency domain distributed 55 segment arterial model was constructed from the reflection perspective to predict pressure waveforms in the large systemic arteries. At any node, the predicted pressure waveform was the combination of a forward propagating waveform and a number of repeatedly reflected waveforms from any possible sites. This approach ensured that any single reflected waveform could be traced back to its origin, and thus the causal-effect relation would be precisely known. This model was evaluated in terms of branch reflection coefficient, terminal vascular bed behavior, and wall viscoelasticity. It was found that the model predicted pressure waveforms were most sensitive to the branch reflection coefficient, and this led to the adoption of the zero-forward reflection assumption at branches. The model-predicted pressure waveforms compared favorably with realistic blood pressure waveforms, especially in the upper limbs. For lower limbs, finer segmentation could further improve the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avolio AP. Multi-branched model of the human arterial system. Med Biol Eng Comp. 1980;18:709–18. doi:10.1007/BF02441895.

    Article  CAS  Google Scholar 

  • Bergel DH. Dynamic elastic properties of the arterial wall. J Physiol. 1961;156:458–69.

    PubMed  CAS  Google Scholar 

  • Berger D, Li JK-J, Laskey WK, Noordergraaf A. Repeated reflection of waves in the systemic arterial system. Am J Physiol Heart & Circ Physiol. 1993;33(264):H269–81.

    Google Scholar 

  • Gosling RG, Newman DL, Bowden NLR, Twinn KW. The are ratio of normal aortic junctions-aortic configuration and pulse wave reflection. Br J Radiol. 1971;44:850–3.

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC. Textbook of medical physiology. 5th ed. Philadelphia: Saunders; 1976.

    Google Scholar 

  • Hardung V. Uber eine Methode zur Messung der dynamischen Elastiziat und Viskositat kautschukahnlicher Korper, insbesondere von Blutgefassen und anderen elastischen Gewebteilen. Helv Physiol Acta. 1952;10:482–98.

    CAS  Google Scholar 

  • Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF. Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol. 1995;267:H1363–9.

    Google Scholar 

  • Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF. Pressure wave propagation in a multibranched model of the human upper limb. Am J Physiol. 1994;269:H1681–8.

    Google Scholar 

  • Li JK-J, Melbin J, Noordergraaf A. Directional disparity of pulse wave reflections in dog arteries. Am J Physiol Heart & Cir Physiol. 1984;247:H95–9.

    CAS  Google Scholar 

  • Li JK-J. Time domain resolution of forward and reflected waves in the aorta. IEEE Trans Biomed Eng. 1986a;BME-33:783–5. doi:10.1109/TBME.1986.325903.

    Article  Google Scholar 

  • Li JK-J. Dominance of geometric over elastic factors in pulse transmission through arterial branching. Bull Math Biol. 1986b;48:97–103.

    PubMed  CAS  Google Scholar 

  • Li JK-J. Arterial systems dynamics. New York: New York Univerity Press; 1987.

    Google Scholar 

  • Li JK-J. Increased arterial pulse wave reflections and pulsatile energy loss in acute hypertension. Angiology J Vasc Dis. 1989;40:730–5.

    CAS  Google Scholar 

  • Li JK-J. The arterial circulation: physical principles and clinical applications. Totowa, NJ: Humana Press; 2000.

    Google Scholar 

  • Li JK-J. Dynamics of the vascular system. Singapore: World Scientific Publishers; 2004.

    Google Scholar 

  • Li JK-J, Zhu Y, O’Hara D, Khaw K. Allometric hemodynamic analysis of isolated systolic hypertension and aging. Cardiovasc Eng. 2007;7:135–9. doi:10.1007/s10558-007-9040-x.

    Article  PubMed  Google Scholar 

  • McDonald DA. Blood flow in arteries. 2nd ed. London: Edward Arnold Ltd; 1974.

    Google Scholar 

  • O’Rourke MF. Arterial hemodynamics in hypertension. Circ Res. 1970;27(2):123–33.

    PubMed  Google Scholar 

  • Papageorgiou GL, Jones NB, Redding VJ, Hudson N. The area ratio of normal arterial junctions and its implications in pulse wave reflections. Cardiovasc Res. 1990;6:478–84. doi:10.1093/cvr/24.6.478.

    Article  Google Scholar 

  • Noordergraaf A, Jager GN, Westerhof N, editors. Circulatory analog computers, Proc. of symposium on development of analog computers in the study of mammalian circulatory systems. Amsterdam: North-Holland Publishing; 1963.

  • Noordergraaf A. Hemodynamics. In: Schwann HP, editor. Biological Engineering. New York: McGraw-Hill; 1969.

    Google Scholar 

  • Safar ME, Simon AC, Levenson JA. Structural changes of large arteries in sustained essential hypertension. Hypertension. 1984;6(3):117–21.

    Google Scholar 

  • Schaaf BW, Abbrecht PH. Digital computer simulation of human systemic arterial pulse transmission: a non-linear model. J Biomech. 1972;5:345–64.

    Article  PubMed  CAS  Google Scholar 

  • Segers P, Stergiopulos N, Verdonck P, Verhoeven R. Assessment of distributed arterial network models. Med Biol Eng Comput. 1997;35:729–36.

    Article  PubMed  CAS  Google Scholar 

  • Snyder MF, Rideout VC, Hillestead RJ. Computer modeling of the human systemic arterial tree. J Biomech. 1968;1:341–53.

    Article  PubMed  CAS  Google Scholar 

  • Stergiopulos N. Computer simulation of arterial blood flow. Ph.D. Dissertation. Iowa State University, Ames; 1990.

  • Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech. 1992;25(12):1477–88.

    Article  PubMed  CAS  Google Scholar 

  • Taylor MG. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J. 1966;6(6):697–716.

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ. Wave Propagation in a model of the human arterial system. Ph.D. Dissertation. University of London, London; 1997.

  • Wang JJ, Parker KH. Wave propagation in a model of the arterial circulation. Biomechanics. 2004;37:457–70.

    Article  CAS  Google Scholar 

  • Westerhof N, Bosman F, DeVries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech. 1969;2:121–43.

    Article  PubMed  CAS  Google Scholar 

  • Womersley JR. Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol. 1957;2(2):178–87.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H. A novel frequency domain arterial tree model: distributed wave reflections and potential clinical applications. Ph.D. Dissertation. Rutgers, the State University of New Jersey; 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Li, J.KJ. A Novel Wave Reflection Model of the Human Arterial System. Cardiovasc Eng 9, 39–48 (2009). https://doi.org/10.1007/s10558-009-9074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-009-9074-3

Keywords

Navigation