Skip to main content

Advertisement

Log in

Contemporary Medical Management of Peripheral Arterial Disease

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Peripheral arterial disease (PAD) is characterized by atherosclerotic arterial occlusive disease of the lower extremities and is associated with an increased risk of major adverse cardiovascular events (MACE) in addition to disabling clinical sequelae, including intermittent claudication and chronic limb-threatening ischemia (CLTI). Given the growing burden of disease, knowledge of modern practices to prevent MACE and major adverse limb events (MALE) is essential. This review article examines evidence for medical management of PAD and its associated risk factors, as well as wound prevention and care.

Methods

A thorough review of the literature was performed, with attention to evidence for the management of modifiable atherosclerotic risk factors, claudication symptoms, wound prevention, and wound care.

Results

Contemporary management of PAD requires a multi-faceted approach to care, with medical optimization of smoking, hypertension, hyperlipidemia, and diabetes mellitus. The use of supervised exercise therapy for intermittent claudication is highlighted. The anatomic disease patterns of smoking and diabetes mellitus are discussed further, and best practices for diabetic foot ulcer prevention, including offloading footwear, are described. Quality wound care is essential in this patient population and involves strategic use of debridement, wound-healing adjuncts, and skin substitutes, when appropriate.

Conclusion

The objective of medical management of PAD is to reduce the risk of MACE and MALE. Atherosclerotic risk factor optimization, appropriate wound care, and management of diabetic foot ulcers, foot infections, gangrene, and chronic, non-healing wounds are critical components of PAD care. Interdisciplinary care is essential to coordinate care, leverage expertise, and improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

PAD:

Peripheral arterial disease

CLTI:

Chronic limb-threatening ischemia

CLI:

Critical limb ischemia

IC:

Intermittent claudication

CAD:

Coronary artery disease

CKD:

Chronic kidney disease

ESRD:

End-stage renal disease

HD:

Hemodialysis

DM:

Diabetes mellitus

MACE:

Major adverse cardiovascular event

MALE:

Major adverse limb event

ABI:

Ankle-brachial index

AHA:

American Heart Association

SVS:

Society for Vascular Surgery

ACC:

American College of Cardiology

References

  1. Song P, Rudan D, Zhu Y, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019;7(8):E1020–E30. https://doi.org/10.1016/S2214-109x(19)30255-4

    Article  PubMed  Google Scholar 

  2. Allison MA, Ho E, Denenberg JO, et al. Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med. 2007;32(4):328–33. https://doi.org/10.1016/J.Amepre.2006.12.010

    Article  PubMed  Google Scholar 

  3. Criqui MH, Matsushita K, Aboyans V, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association. Circulation. 2021;144(9):E171–E91. https://doi.org/10.1161/Cir.0000000000001005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health And Nutrition Examination Survey, 1999-2000. Circulation. 2004;110(6):738–43. https://doi.org/10.1161/01.Cir.0000137913.26087.F0

    Article  PubMed  Google Scholar 

  5. Meijer WT, Hoes AW, Rutgers D, et al. Peripheral arterial disease in the elderly: the Rotterdam study. Arterioscler Thromb Vasc Biol. 1998;18(2):185–92. https://doi.org/10.1161/01.Atv.18.2.185

    Article  CAS  PubMed  Google Scholar 

  6. Criqui MH, Vargas V, Denenberg JO, et al. Ethnicity and peripheral arterial disease: the San Diego Population Study. Circulation. 2005;112(17):2703–7. https://doi.org/10.1161/Circulationaha.105.546507

    Article  PubMed  Google Scholar 

  7. Eslami MH, Zayaruzny M, Fitzgerald GA. The adverse effects of race, insurance status, and low income on the rate of amputation in patients presenting with lower extremity ischemia. J Vasc Surg. 2007;45(1):55–9. https://doi.org/10.1016/J.Jvs.2006.09.044

    Article  PubMed  Google Scholar 

  8. Hirsch AT, Allison MA, Gomes AS, et al. A call to action: women and peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2012;125(11):1449–72. https://doi.org/10.1161/Cir.0b013e31824c39ba

    Article  PubMed  Google Scholar 

  9. Srivaratharajah K, Abramson BL. Women and peripheral arterial disease: a review of sex differences in epidemiology, clinical manifestations, and outcomes. Can J Cardiol. 2018;34(4):356–61. https://doi.org/10.1016/J.Cjca.2018.01.009

    Article  PubMed  Google Scholar 

  10. Vart P, Coresh J, Kwak L, et al. Socioeconomic status and incidence of hospitalization with lower-extremity peripheral artery disease: atherosclerosis risk in communities study. J Am Heart Assoc. 2017;6(8) https://doi.org/10.1161/Jaha.116.004995

  11. Pande RL, Creager MA. Socioeconomic inequality and peripheral artery disease prevalence in US adults. Circ Cardiovasc Qual Outcomes. 2014;7(4):532–9. https://doi.org/10.1161/Circoutcomes.113.000618

    Article  PubMed  PubMed Central  Google Scholar 

  12. Society For Vascular Surgery Lower Extremity Guidelines Writing G, Conte MS, Pomposelli FB, et al. Society For Vascular Surgery Practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2s–41s. https://doi.org/10.1016/J.Jvs.2014.12.009

    Article  Google Scholar 

  13. Alahdab F, Wang AT, Elraiyah TA, et al. A systematic review for the screening for peripheral arterial disease in asymptomatic patients. J Vasc Surg. 2015;61(3 Suppl):42s–53s. https://doi.org/10.1016/J.Jvs.2014.12.008

    Article  PubMed  Google Scholar 

  14. Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol. 2022;19(7):456–74. https://doi.org/10.1038/S41569-021-00663-9

    Article  PubMed  Google Scholar 

  15. Bonaca MP, Hamburg NM, Creager MA. Contemporary medical management of peripheral artery disease. Circ Res. 2021;128(12):1868–84. https://doi.org/10.1161/Circresaha.121.318258

    Article  CAS  PubMed  Google Scholar 

  16. Nastasi DR, Moxon JV, Norman R, et al. The cost-effectiveness of intensive low-density lipoprotein cholesterol lowering in people with peripheral artery disease. J Vasc Surg. 2021;73(4):1396–403. https://doi.org/10.1016/J.Jvs.2020.08.129

    Article  PubMed  Google Scholar 

  17. Mcdermott MM, Guralnik JM, Tian L, et al. Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking And Leg Circulation Study). J Am Coll Cardiol. 2009;53(12):1056–62. https://doi.org/10.1016/J.Jacc.2008.09.063

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43(10):1731–7. https://doi.org/10.1016/J.Jacc.2003.12.047

    Article  CAS  PubMed  Google Scholar 

  19. Csordas A, Bernhard D. The biology behind the atherothrombotic effects of cigarette smoke. Nat Rev Cardiol. 2013;10(4):219–30. https://doi.org/10.1038/Nrcardio.2013.8

    Article  CAS  PubMed  Google Scholar 

  20. Yarlioglues M, Ardic I, Dogdu O, et al. The acute effects of passive smoking on mean platelet volume in healthy volunteers. Angiology. 2012;63(5):353–7. https://doi.org/10.1177/0003319711420131

    Article  PubMed  Google Scholar 

  21. Goncalves RB, Coletta RD, Silverio KG, et al. Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res. 2011;60(5):409–24. https://doi.org/10.1007/S00011-011-0308-7

    Article  CAS  PubMed  Google Scholar 

  22. Gordon T, Kannel WB. Predisposition to atherosclerosis in the head, heart, and legs. The Framingham Study. Jama. 1972;221(7):661–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bainton D, Sweetnam P, Baker I, Elwood P. Peripheral vascular disease: consequence for survival and association with risk factors in the Speedwell prospective heart disease study. Br Heart J. 1994;72(2):128–32. https://doi.org/10.1136/Hrt.72.2.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lassila R, Lepantalo M. Cigarette smoking and the outcome after lower limb arterial surgery. Acta Chir Scand. 1988;154(11-12):635–40.

    CAS  PubMed  Google Scholar 

  25. Gerhard-Herman MD, Gornik HL, Barrett C, et al. 2016 AHA/ACC Guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College Of Cardiology/American Heart Association Task Force On Clinical Practice Guidelines. Circulation. 2017;135(12):E686–725. https://doi.org/10.1161/Cir.0000000000000470

    Article  PubMed  Google Scholar 

  26. Spangler EL, Goodney PP. Smoking cessation strategies in vascular surgery. Semin Vasc Surg. 2015;28(2):80–5. https://doi.org/10.1053/J.Semvascsurg.2015.10.001

    Article  PubMed  Google Scholar 

  27. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). Jama. 2014;311(5):507–20. https://doi.org/10.1001/Jama.2013.284427

    Article  CAS  PubMed  Google Scholar 

  28. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APHA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College Of Cardiology/American Heart Association Task Force On Clinical Practice Guidelines. Circulation. 2018;138(17):E484–594. https://doi.org/10.1161/Cir.0000000000000596

    Article  PubMed  Google Scholar 

  29. Mehler PS, Coll JR, Estacio R, et al. Intensive blood pressure control reduces the risk of cardiovascular events in patients with peripheral arterial disease and type 2 diabetes. Circulation. 2003;107(5):753–6. https://doi.org/10.1161/01.Cir.0000049640.46039.52

    Article  PubMed  Google Scholar 

  30. Zankl AR, Ivandic B, Andrassy M, et al. Telmisartan improves absolute walking distance and endothelial function in patients with peripheral artery disease. Clin Res Cardiol. 2010;99(12):787–94. https://doi.org/10.1007/S00392-010-0184-0

    Article  CAS  PubMed  Google Scholar 

  31. Ostergren J, Sleight P, Dagenais G, et al. Impact of ramipril in patients with evidence of clinical or subclinical peripheral arterial disease. Eur Heart J. 2004;25(1):17–24. https://doi.org/10.1016/J.Ehj.2003.10.033

    Article  CAS  PubMed  Google Scholar 

  32. Group Sr, Wright JT Jr, Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/Nejmoa1511939

    Article  Google Scholar 

  33. Ference BA, Ginsberg HN, Graham I, et al. Low-Density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://doi.org/10.1093/Eurheartj/Ehx144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation. 2004;110(2):227–39. https://doi.org/10.1161/01.Cir.0000133317.49796.0e

    Article  PubMed  Google Scholar 

  35. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College Of Cardiology/American Heart Association Task Force On Clinical Practice Guidelines. Circulation. 2019;139(25):E1082–E143. https://doi.org/10.1161/Cir.0000000000000625

    Article  PubMed  Google Scholar 

  36. Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):E38–81. https://doi.org/10.1161/Atv.0000000000000073

    Article  CAS  PubMed  Google Scholar 

  37. Bjornsson E, Jacobsen EI, Kalaitzakis E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol. 2012;56(2):374–80. https://doi.org/10.1016/J.Jhep.2011.07.023

    Article  PubMed  Google Scholar 

  38. Bonaca MP, Nault P, Giugliano RP, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition In Subjects With Elevated Risk). Circulation. 2018;137(4):338–50. https://doi.org/10.1161/Circulationaha.117.032235

    Article  CAS  PubMed  Google Scholar 

  39. Jukema JW, Szarek M, Zijlstra LE, et al. Alirocumab in patients with polyvascular disease and recent acute coronary syndrome: ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2019;74(9):1167–76. https://doi.org/10.1016/J.Jacc.2019.03.013

    Article  CAS  PubMed  Google Scholar 

  40. Donnelly R, Emslie-Smith AM, Gardner ID, Morris AD. ABC of arterial and venous disease: vascular complications of diabetes. Bmj. 2000;320(7241):1062–6. https://doi.org/10.1136/Bmj.320.7241.1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hingorani A, Lamuraglia GM, Henke P, et al. The management of diabetic foot: a clinical practice guideline by the Society For Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society For Vascular Medicine. J Vasc Surg. 2016;63(2 Suppl):3s–21s. https://doi.org/10.1016/J.Jvs.2015.10.003

    Article  PubMed  Google Scholar 

  42. Jude EB, Oyibo SO, Chalmers N, Boulton AJ. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7. https://doi.org/10.2337/Diacare.24.8.1433

    Article  CAS  PubMed  Google Scholar 

  43. American Diabetes A. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333–41. https://doi.org/10.2337/Diacare.26.12.3333

    Article  Google Scholar 

  44. Van Schie CH, Vermigli C, Carrington AL, Boulton A. Muscle weakness and foot deformities in diabetes: relationship to neuropathy and foot ulceration in caucasian diabetic men. Diabetes Care. 2004;27(7):1668–73. https://doi.org/10.2337/Diacare.27.7.1668

    Article  PubMed  Google Scholar 

  45. Schaper NC, Van Netten JJ, Apelqvist J, et al. Practical guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(Suppl 1):E3266. https://doi.org/10.1002/Dmrr.3266

    Article  PubMed  Google Scholar 

  46. American Diabetes A. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98–S110. https://doi.org/10.2337/Dc20-S009

    Article  Google Scholar 

  47. Han Y, Xie H, Liu Y, et al. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18(1):96. https://doi.org/10.1186/S12933-019-0900-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brown E, HJL H, Cuthbertson DJ, JPH W. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet. 2021;398(10296):262–76. https://doi.org/10.1016/S0140-6736(21)00536-5

    Article  CAS  PubMed  Google Scholar 

  49. Skeik N, Elejla SA, Sethi A, Manunga J, Mirza A. Effects of SGLT2 inhibitors and GLP1-receptor agonists on cardiovascular and limb events in peripheral artery disease: a review. Vasc Med. 2023;28(1):62–76. https://doi.org/10.1177/1358863x221143811

    Article  CAS  PubMed  Google Scholar 

  50. American Diabetes Association Professional Practice C. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S125–S43. https://doi.org/10.2337/Dc22-S009

    Article  Google Scholar 

  51. Althouse AD, Abbott JD, Sutton-Tyrrell K, et al. Favorable effects of insulin sensitizers pertinent to peripheral arterial disease in type 2 diabetes: results from the Bypass Angioplasty Revascularization Investigation 2 diabetes (BARI 2D) trial. Diabetes Care. 2013;36(10):3269–75. https://doi.org/10.2337/Dc12-2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haltmayer M, Mueller T, Horvath W, et al. Impact of atherosclerotic risk factors on the anatomical distribution of peripheral arterial disease. Int Angiol. 2001;20(3):200–7.

    CAS  PubMed  Google Scholar 

  53. Van Der Feen C, Neijens FS, Kanters SD, et al. Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes. Diabet Med. 2002;19(5):366–70. https://doi.org/10.1046/J.1464-5491.2002.00642.X

    Article  PubMed  Google Scholar 

  54. Chung J, Modrall JG, Knowles M, et al. Arteriographic patterns of atherosclerosis and the association between diabetes mellitus and ethnicity in chronic critical limb ischemia. Ann Vasc Surg. 2017;40:198–205. https://doi.org/10.1016/J.Avsg.2016.11.003

    Article  PubMed  Google Scholar 

  55. Rueda CA, Nehler MR, Perry DJ, et al. Patterns of artery disease in 450 patients undergoing revascularization for critical limb ischemia: implications for clinical trial design. J Vasc Surg. 2008;47(5):995–9. https://doi.org/10.1016/J.Jvs.2007.11.055

    Article  PubMed  Google Scholar 

  56. Ramanan B, Jeon-Slaughter H, Chen X, Modrall JG, Tsai S. Comparison of open and endovascular procedures in patients with critical limb ischemia on dialysis. J Vasc Surg. 2019;70(4):1217–24. https://doi.org/10.1016/J.Jvs.2018.12.054

    Article  PubMed  Google Scholar 

  57. Aquino R, Johnnides C, Makaroun M, et al. Natural history of claudication: long-term serial follow-up study of 1244 claudicants. J Vasc Surg. 2001;34(6):962–70. https://doi.org/10.1067/Mva.2001.119749

    Article  CAS  PubMed  Google Scholar 

  58. Muluk SC, Muluk VS, Kelley ME, et al. Outcome events in patients with claudication: a 15-year study in 2777 patients. J Vasc Surg. 2001;33(2):251–7. https://doi.org/10.1067/Mva.2001.112210

    Article  CAS  PubMed  Google Scholar 

  59. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. Jama. 1995;274(12):975–80.

    Article  CAS  PubMed  Google Scholar 

  60. Regensteiner JG, Ware JE Jr, Mccarthy WJ, et al. Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. J Am Geriatr Soc. 2002;50(12):1939–46. https://doi.org/10.1046/J.1532-5415.2002.50604.X

    Article  PubMed  Google Scholar 

  61. Barnett AH, Bradbury AW, Brittenden J, et al. The role of cilostazol in the treatment of intermittent claudication. Curr Med Res Opin. 2004;20(10):1661–70. https://doi.org/10.1185/030079904x4464

    Article  CAS  PubMed  Google Scholar 

  62. Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society For Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesendorsed by: the European Stroke Organization (ESO)The task force for the diagnosis and treatment of peripheral arterial diseases of the European Society Of Cardiology (ESC) and of the European Society For Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816. https://doi.org/10.1093/Eurheartj/Ehx095

    Article  PubMed  Google Scholar 

  63. Committee CS. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Caprie Steerin Comm Lancet. 1996;348(9038):1329–39. https://doi.org/10.1016/S0140-6736(96)09457-3

    Article  Google Scholar 

  64. Hiatt WR, Fowkes FG, Heizer G, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376(1):32–40. https://doi.org/10.1056/Nejmoa1611688

    Article  CAS  PubMed  Google Scholar 

  65. Guirgis M, Thompson P, Jansen S. Review of aspirin and clopidogrel resistance in peripheral arterial disease. J Vasc Surg. 2017;66(5):1576–86. https://doi.org/10.1016/J.Jvs.2017.07.065

    Article  PubMed  Google Scholar 

  66. Anand SS, Caron F, Eikelboom JW, et al. Major adverse limb events and mortality in patients with peripheral artery disease: the compass trial. J Am Coll Cardiol. 2018;71(20):2306–15. https://doi.org/10.1016/J.Jacc.2018.03.008

    Article  PubMed  Google Scholar 

  67. Mills JL Sr, Conte MS, Armstrong DG, et al. The society for vascular surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg. 2014;59(1):220–34. https://doi.org/10.1016/J.Jvs.2013.08.003

    Article  PubMed  Google Scholar 

  68. Barnes JA, Eid MA, Creager MA, Goodney PP. Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease. Arterioscler Thromb Vasc Biol. 2020;40(8):1808–17. https://doi.org/10.1161/Atvbaha.120.314595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lipsky BA, Senneville E, Abbas ZG, et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(Suppl 1):E3280. https://doi.org/10.1002/Dmrr.3280

    Article  PubMed  Google Scholar 

  70. Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):E132–73. https://doi.org/10.1093/Cid/Cis346

    Article  PubMed  Google Scholar 

  71. Walters J, Cazzell S, Pham H, Vayser D, Reyzelman A. Healing rates in a multicenter assessment of a sterile, room temperature, acellular dermal matrix versus conventional care wound management and an active comparator in the treatment of full-thickness diabetic foot ulcers. Eplasty. 2016;16:E10.

    PubMed  PubMed Central  Google Scholar 

  72. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic Ulcer Study Group. J Am Coll Surg. 1996;183(1):61–4.

    CAS  PubMed  Google Scholar 

  73. Cardinal M, Eisenbud DE, Armstrong DG, et al. Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds. Wound Repair Regen. 2009;17(3):306–11. https://doi.org/10.1111/J.1524-475x.2009.00485.X

    Article  PubMed  Google Scholar 

  74. Wilcox JR, Carter MJ, Covington S. Frequency of debridements and time to heal: a retrospective cohort study of 312 744 wounds. Jama Dermatol. 2013;149(9):1050–8. https://doi.org/10.1001/Jamadermatol.2013.4960

    Article  PubMed  Google Scholar 

  75. Nube VL, White JM, Brewer K, et al. A randomized trial comparing weekly with every second week sharp debridement in people with diabetes-related foot ulcers shows similar healing outcomes: potential benefit to resource utilization. Diabetes Care. 2021;44(12):E203–E5. https://doi.org/10.2337/Dc21-1454

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dayya D, O'neill OJ, Huedo-Medina TB, et al. Debridement of diabetic foot ulcers. Adv Wound Care. 2022;11(12):666–86. https://doi.org/10.1089/Wound.2021.0016

    Article  Google Scholar 

  77. Edmonds M, Lazaro-Martinez JL, Alfayate-Garcia JM, et al. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): an international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol. 2018;6(3):186–96. https://doi.org/10.1016/S2213-8587(17)30438-2

    Article  CAS  PubMed  Google Scholar 

  78. Rayman G, Vas P, Dhatariya K, et al. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(Suppl 1):E3283. https://doi.org/10.1002/Dmrr.3283

    Article  PubMed  Google Scholar 

  79. Ga H, Jr., Johansen Kh, Barnes Rw, Pierce Ge. Multicenter trial of cadexomer iodine to treat venous stasis ulcer. West J Med. 1989;151(1):35–8.

    Google Scholar 

  80. Anghel EL, Kim PJ. Negative-pressure wound therapy: a comprehensive review of the evidence. Plast Reconstr Surg. 2016;138(3 Suppl):129s–37s. https://doi.org/10.1097/Prs.0000000000002645

    Article  CAS  PubMed  Google Scholar 

  81. Armstrong DG, Lavery LA, Diabetic Foot Study C. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366(9498):1704–10. https://doi.org/10.1016/S0140-6736(05)67695-7

    Article  PubMed  Google Scholar 

  82. Faust E, Opoku-Agyeman JL, Behnam AB. Use of negative-pressure wound therapy with instillation and dwell time: an overview. Plast Reconstr Surg. 2021;147(1s-1):16s–26s. https://doi.org/10.1097/Prs.0000000000007607

    Article  CAS  PubMed  Google Scholar 

  83. Game F, Jeffcoate W, Tarnow L, et al. Leucopatch system for the management of hard-to-heal diabetic foot ulcers in the UK, Denmark, and Sweden: an observer-masked, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(11):870–8. https://doi.org/10.1016/S2213-8587(18)30240-7

    Article  PubMed  Google Scholar 

  84. Didomenico LA, Orgill DP, Galiano RD, et al. Aseptically processed placental membrane improves healing of diabetic foot ulcerations: prospective, randomized clinical trial. Plast Reconstr Surg Glob Open. 2016;4(10):E1095. https://doi.org/10.1097/Gox.0000000000001095

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zelen CM, Gould L, Serena TE, et al. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015;12(6):724–32. https://doi.org/10.1111/Iwj.12395

    Article  PubMed  Google Scholar 

  86. Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013;10(5):502–7. https://doi.org/10.1111/Iwj.12097

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zelen CM, Serena TE, Gould L, et al. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int Wound J. 2016;13(2):272–82. https://doi.org/10.1111/Iwj.12566

    Article  PubMed  Google Scholar 

  88. Lavery LA, Fulmer J, Shebetka KA, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J. 2014;11(5):554–60. https://doi.org/10.1111/Iwj.12329

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mohajeri-Tehrani MR, Variji Z, Mohseni S, et al. Comparison of a bioimplant dressing with a wet dressing for the treatment of diabetic foot ulcers: a randomized, controlled clinical trial. Wounds. 2016;28(7):248–54.

    PubMed  Google Scholar 

  90. Snyder RJ, Shimozaki K, Tallis A, et al. A prospective, randomized, multicenter, controlled evaluation of the use of dehydrated amniotic membrane allograft compared to standard of care for the closure of chronic diabetic foot ulcer. Wounds. 2016;28(3):70–7.

    PubMed  Google Scholar 

  91. Ananian CE, Dhillon YS, Van Gils CC, et al. A multicenter, randomized, single-blind trial comparing the efficacy of viable cryopreserved placental membrane to human fibroblast-derived dermal substitute for the treatment of chronic diabetic foot ulcers. Wound Repair Regen. 2018;26(3):274–83. https://doi.org/10.1111/Wrr.12645

    Article  PubMed  Google Scholar 

  92. Tettelbach W, Cazzell S, Reyzelman AM, et al. A Confirmatory study on the efficacy of dehydrated human amnion/chorion membrane dHACM allograft in the management of diabetic foot ulcers: a prospective, multicentre, randomised, controlled study of 110 patients from 14 wound clinics. Int Wound J. 2019;16(1):19–29. https://doi.org/10.1111/Iwj.12976

    Article  PubMed  Google Scholar 

  93. Tettelbach W, Cazzell S, Sigal F, et al. A multicentre prospective randomised controlled comparative parallel study of dehydrated human umbilical cord (Epicord) allograft for the treatment of diabetic foot ulcers. Int Wound J. 2019;16(1):122–30. https://doi.org/10.1111/Iwj.13001

    Article  PubMed  Google Scholar 

  94. Kirsner RS, Sabolinski ML, Parsons NB, Skornicki M, Marston WA. Comparative effectiveness of a bioengineered living cellular construct vs. a dehydrated human amniotic membrane allograft for the treatment of diabetic foot ulcers in a real world setting. Wound Repair Regen. 2015;23(5):737–44. https://doi.org/10.1111/Wrr.12332

    Article  PubMed  Google Scholar 

  95. Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99. https://doi.org/10.22203/Ecm.V015a07

    Article  CAS  PubMed  Google Scholar 

  96. Driver VR, Lavery LA, Reyzelman AM, et al. A clinical trial of integra template for diabetic foot ulcer treatment wound repair regen. 2015;23(6):891–900. https://doi.org/10.1111/Wrr.12357

  97. Hu Z, Zhu J, Cao X, et al. Composite skin grafting with human acellular dermal matrix scaffold for treatment of diabetic foot ulcers: a randomized controlled trial. J Am Coll Surg. 2016;222(6):1171–9. https://doi.org/10.1016/J.Jamcollsurg.2016.02.023

    Article  PubMed  Google Scholar 

  98. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care. 1996;19(12):1338–43. https://doi.org/10.2337/Diacare.19.12.1338

    Article  CAS  PubMed  Google Scholar 

  99. Abidia A, Laden G, Kuhan G, et al. The role of hyperbaric oxygen therapy in ischaemic diabetic lower extremity ulcers: a double-blind randomised-controlled trial. Eur J Vasc Endovasc Surg. 2003;25(6):513–8. https://doi.org/10.1053/Ejvs.2002.1911

    Article  CAS  PubMed  Google Scholar 

  100. Londahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010;33(5):998–1003. https://doi.org/10.2337/Dc09-1754

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fedorko L, Bowen JM, Jones W, et al. Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial. Diabetes Care. 2016;39(3):392–9. https://doi.org/10.2337/Dc15-2001

    Article  CAS  PubMed  Google Scholar 

  102. Santema KTB, Stoekenbroek RM, Koelemay MJW, et al. Hyperbaric oxygen therapy in the treatment of ischemic lower- extremity ulcers in patients with diabetes: results of the DAMO(2)CLES multicenter randomized clinical trial. Diabetes Care. 2018;41(1):112–9. https://doi.org/10.2337/Dc17-0654

    Article  CAS  PubMed  Google Scholar 

  103. Grolman RE, Wilkerson DK, Taylor J, Allinson P, Zatina MA. Transcutaneous oxygen measurements predict a beneficial response to hyperbaric oxygen therapy in patients with nonhealing wounds and critical limb ischemia. Am Surg. 2001;67(11):1072–9.

    Article  CAS  PubMed  Google Scholar 

  104. Fife CE, Buyukcakir C, Otto GH, et al. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1,144 patients. Wound Repair Regen. 2002;10(4):198–207. https://doi.org/10.1046/J.1524-475x.2002.10402.X

    Article  PubMed  Google Scholar 

  105. Brouwer RJ, Lalieu RC, Hoencamp R, Van Hulst RA, Ubbink DT. A systematic review and meta-analysis of hyperbaric oxygen therapy for diabetic foot ulcers with arterial insufficiency. J Vasc Surg. 2020;71(2):682–92. https://doi.org/10.1016/J.Jvs.2019.07.082

    Article  PubMed  Google Scholar 

  106. Chuck AW, Hailey D, Jacobs P, Perry DC. Cost-effectiveness and budget impact of adjunctive hyperbaric oxygen therapy for diabetic foot ulcers. Int J Technol Assess Health Care. 2008;24(2):178–83. https://doi.org/10.1017/S0266462308080252

    Article  PubMed  Google Scholar 

  107. Browder SE, Ngeve SM, Hamrick ME, et al. Analysis of wound healing time and wound-free period in patients with chronic limb-threatening ischemia treated with and without revascularization. J Vasc Surg. 2022;76(6):1667–73. https://doi.org/10.1016/J.Jvs.2022.05.025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both Dr. Cook-Armstrong and Dr. Jayer Chung contributed equally to the writing and the critical revisions and concept of the manuscript. There were no statistical analyses undertaken for the manuscript. There was no appropriation of funding for the manuscript. Dr. Chung assumes ultimate responsibility for the integrity of the work.

Corresponding author

Correspondence to Jayer Chung.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Both Dr. Cook-Armstrong and Jayer Chung provide consent for publication and transfer of copyrights to the publisher.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, I.O., Chung, J. Contemporary Medical Management of Peripheral Arterial Disease. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07516-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07516-2

Keywords

Navigation