Skip to main content

Advertisement

Log in

Advances in the Management of Peripheral Artery Disease

  • Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper provides a concise update on the management of peripheral artery disease (PAD).

Recent Findings

PAD continues to denote a population at high risk for mortality but represents a threat for limb loss only when associated with foot ulcers, gangrene, or infections. Performing either angiogram or non-invasive testing for all patients with foot ulcers, gangrene, or foot infections will help increase the detection of PAD, and refined revascularization strategies may help optimize wound healing in this patient group. Structured exercise programs are becoming available to more patients with claudication as methods to improve adherence to community-based exercise programs will improve. Finally, ensuring more patients with PAD receive aspirin therapy and statins may improve long-term survival, while further research will help determine if adding newer antiplatelet or anticoagulant medications may reduce leg amputations in selected patients.

Summary

Clinicians should have a low threshold to obtain an angiogram and to pursue revascularization in patients with foot ulcers, gangrene, or foot infections. In patients with claudication, clinicians should maximize the benefits derived from exercise therapy and medical management before offering percutaneous or surgical revascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PAD:

Peripheral artery disease

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barshes NR, Belkin M. A framework for the evaluation of “value” and cost-effectiveness in the management of critical limb ischemia. J Am Coll Surg. 2011;213:552–566.e5.

    Article  PubMed  Google Scholar 

  2. De Martino RR, Hoel AW, Beck AW, Eldrup-Jorgensen J, Hallett JW, Upchurch GR, et al. Participation in the vascular quality initiative is associated with improved perioperative medication use, which is associated with longer patient survival. J Vasc Surg. 2015;61:1010–9.

  3. Meltzer AJ, Sedrakyan A, Connolly PH, Ellozy S, Schneider DB. Vascular study group of greater. Risk factors for suboptimal utilization of statins and antiplatelet therapy in patients undergoing revascularization for symptomatic peripheral arterial disease. Ann Vasc Surg. 2018;46:234–40.

    Article  PubMed  Google Scholar 

  4. Halle TR, Benarroch-Gampel J, Teodorescu VJ, Rajani RR. Surgical intervention for peripheral artery disease does not improve patient compliance with recommended medical therapy. Ann Vasc Surg. 2018;46:104–11.

    Article  PubMed  Google Scholar 

  5. •• Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2016;135(12):e726–79. Updated, comprehensive and practical guideline on both contemporary medical and surgical management of lower extremity peripheral artery disease.

  6. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:219–29.

  7. Connolly SJ, Eikelboom JW, Bosch J, Dagenais G, Dyal L, Lanas F, et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:205–18.

  8. Karatasakis A, Danek BA, Karacsonyi J, Rangan BV, Roesle MK, Knickelbine T, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J Am Heart Assoc. 2017;6.

  9. Aquino R, Johnnides C, Makaroun M, Whittle JC, Muluk VS, Kelley ME, et al. Natural history of claudication: long-term serial follow-up study of 1244 claudicants. J Vasc Surg. 2001;34:962–70.

    Article  CAS  PubMed  Google Scholar 

  10. Fakhry F, Rouwet EV, den Hoed PT, Hunink MGM, Spronk S. Long-term clinical effectiveness of supervised exercise therapy versus endovascular revascularization for intermittent claudication from a randomized clinical trial. Br J Surg. 2013;100:1164–71.

    Article  CAS  PubMed  Google Scholar 

  11. Perkins JM, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplasty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovasc Surg. 1996;11:409–13.

    Article  CAS  PubMed  Google Scholar 

  12. Whyman MR, Fowkes FG, Kerracher EM, Gillespie IN, Lee AJ, Housley E, et al. Is intermittent claudication improved by percutaneous transluminal angioplasty? A randomized controlled trial. J Vasc Surg. 1997;26:551–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hobbs SD, Bradbury AW. The EXercise versus angioplasty in claudication trial (EXACT): reasons for recruitment failure and the implications for research into and treatment of intermittent claudication. J Vasc Surg. 2006;44:432–3.

    Article  PubMed  Google Scholar 

  14. Mazari FAK, Gulati S, Rahman MNA, Lee HLD, Mehta TA, McCollum PT, et al. Early outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and combined therapy in intermittent claudication. Ann Vasc Surg. 2010;24:69–79.

    Article  CAS  PubMed  Google Scholar 

  15. Centers for Medicare and Medicaid Services. Decision Memo for Supervised Exercise Therapy (SET) for Symptomatic Peripheral Artery Disease (PAD) (CAG-00449N) [Internet]. [cited 2019 Jan 18];Available from: https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=287

  16. Collins TC, Johnson SL, Souchek J. Unsupervised walking therapy and atherosclerotic risk-factor management for patients with peripheral arterial disease: a pilot trial. Ann Behav Med. 2007;33:318–24.

    Article  PubMed  Google Scholar 

  17. Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial. Circulation. 2011;123:491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mouser MJ, Zlabek JA, Ford CL, Mathiason MA. Community trial of home-based exercise therapy for intermittent claudication. Vasc Med. 2009;14:103–7.

    Article  PubMed  Google Scholar 

  19. Yudi MB, Clark DJ, Tsang D, Jelinek M, Kalten K, Joshi S, et al. SMARTphone-based, early cardiac REHABilitation in patients with acute coronary syndromes [SMART-REHAB trial]: a randomized controlled trial protocol. BMC Cardiovasc Disord. 2016;16:170.

  20. Nogic J, Thein PM, Cameron J, Mirzaee S, Ihdayhid A, Nasis A. The utility of personal activity trackers (Fitbit charge 2) on exercise capacity in patients post acute coronary syndrome [UP-STEP ACS trial]: a randomised controlled trial protocol. BMC Cardiovasc Disord. 2017;17:303.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Höchsmann C, Walz SP, Schäfer J, Holopainen J, Hanssen H, Schmidt-Trucksäss A. Mobile exergaming for health-effects of a serious game application for smartphones on physical activity and exercise adherence in type 2 diabetes mellitus-study protocol for a randomized controlled trial. Trials. 2017;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yom-Tov E, Feraru G, Kozdoba M, Mannor S, Tennenholtz M, Hochberg I. Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. J Med Internet Res. 2017;19:e338.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patel MS, Asch DA, Rosin R, Small DS, Bellamy SL, Heuer J, et al. Framing financial incentives to increase physical activity among overweight and obese adults: a randomized, controlled trial. Ann Intern Med. 2016;164:385–94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brownson RC, Baker EA, Boyd RL, Caito NM, Duggan K, Housemann RA, et al. A community-based approach to promoting walking in rural areas. Am J Prev Med. 2004;27:28–34.

    Article  PubMed  Google Scholar 

  25. Sharath SE, Kougias P, Barshes NR. The influence of pain-related beliefs on physical activity and health attitudes in patients with claudication: a pilot study. Vasc Med. 2017;22:378–84.

    Article  PubMed  Google Scholar 

  26. Sharath SE, Kougias P, Pisimisis G, Barshes NR. The impact of clinical, psychological, behavioral, social, and environmental factors on self-perceived symptom severity in a male cohort with intermittent claudication. J Vasc Surg. 2016;63:1296–1304.e4.

    Article  PubMed  Google Scholar 

  27. Sharath SE, Lee M, Kougias P, Taylor WC, Zamani N, Barshes NR. Successful smoking cessation associated with walking behavior in patients with claudication. Ann Vasc Surg. 2018;67:e210–1.

    Article  Google Scholar 

  28. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg. 2010;51:5S–17S.

    Article  PubMed  Google Scholar 

  29. Korhonen M, Biancari F, Söderström M, Arvela E, Halmesmäki K, Albäck A, et al. Femoropopliteal balloon angioplasty vs. bypass surgery for CLI: a propensity score analysis. Eur J Vasc Endovasc Surg. 2011;41:378–84.

    Article  CAS  PubMed  Google Scholar 

  30. Aulivola B, Gargiulo M, Bessoni M, Rumolo A, Stella A. Infrapopliteal angioplasty for limb salvage in the setting of renal failure: do results justify its use? Ann Vasc Surg. 2005;19:762–8.

    Article  PubMed  Google Scholar 

  31. Albers M, Romiti M, De Luccia N, Brochado-Neto FC, Nishimoto I, Pereira CAB. An updated meta-analysis of infrainguinal arterial reconstruction in patients with end-stage renal disease. J Vasc Surg. 2007;45:536–42.

    Article  PubMed  Google Scholar 

  32. Barshes NR, Kougias P, Ozaki CK, Goodney PP, Belkin M. Cost-effectiveness of revascularization for limb preservation in patients with end-stage renal disease. J Vasc Surg. 2014;60:369–374.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iida O, Takahara M, Soga Y, Kodama A, Terashi H, Azuma N, SPINACH Investigators. Three-year outcomes of surgical versus endovascular revascularization for critical limb ischemia: the SPINACH study (surgical reconstruction versus peripheral intervention in patients with critical limb ischemia). Circ Cardiovasc Interv 2017;10.

  34. Barshes NR, Menard MT, Nguyen LL, Bafford R, Ozaki CK, Belkin M. Infrainguinal bypass is associated with lower perioperative mortality than major amputation in high-risk surgical candidates. J Vasc Surg. 2011;53:1251–1259.e1.

    Article  PubMed  Google Scholar 

  35. Belkin M, Knox J, Donaldson MC, Mannick JA, Whittemore AD. Infrainguinal arterial reconstruction with nonreversed greater saphenous vein. J Vasc Surg. 1996;24:957–62.

    Article  CAS  PubMed  Google Scholar 

  36. Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37:307–15.

    Article  PubMed  Google Scholar 

  37. Marston WA, Davies SW, Armstrong B, Farber MA, Mendes RC, Fulton JJ, et al. Natural history of limbs with arterial insufficiency and chronic ulceration treated without revascularization. J Vasc Surg. 2006;44:108–14.

    Article  Google Scholar 

  38. Söderström M, Albäck A, Biancari F, Lappalainen K, Lepäntalo M, Venermo M. Angiosome-targeted infrapopliteal endovascular revascularization for treatment of diabetic foot ulcers. J Vasc Surg. 2013;57:427–35.

    Article  PubMed  Google Scholar 

  39. Kret MR, Cheng D, Azarbal AF, Mitchell EL, Liem TK, Moneta GL, et al. Utility of direct angiosome revascularization and runoff scores in predicting outcomes in patients undergoing revascularization for critical limb ischemia. J Vasc Surg. 2014;59:121–8.

    Article  PubMed  Google Scholar 

  40. Rashid H, Slim H, Zayed H, Huang DY, Wilkins CJ, Evans DR, et al. The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg. 2013;57:1219–26.

    Article  PubMed  Google Scholar 

  41. Kobayashi N, Hirano K, Yamawaki M, Araki M, Takimura H, Sakamoto Y, et al. Clinical effects of single or double tibial artery revascularization in critical limb ischemia patients with tissue loss. J Vasc Surg. 2017;65:744–53.

    Article  PubMed  Google Scholar 

  42. Abdelhamid MF, Davies RSM, Rai S, Hopkins JD, Duddy MJ, Vohra RK. Below-the-ankle angioplasty is a feasible and effective intervention for critical leg ischaemia. Eur J Vasc Endovasc Surg. 2010;39:762–8.

    Article  CAS  PubMed  Google Scholar 

  43. Katsanos K, Diamantopoulos A, Spiliopoulos S, Karnabatidis D, Siablis D. Below-the-ankle angioplasty and stenting for limb salvage: anatomical considerations and long-term outcomes. Cardiovasc Intervent Radiol. 2013;36:926–35.

    Article  PubMed  Google Scholar 

  44. Nakama T, Watanabe N, Haraguchi T, Sakamoto H, Kamoi D, Tsubakimoto Y, et al. Clinical outcomes of pedal artery angioplasty for patients with ischemic wounds: Results From the Multicenter RENDEZVOUS Registry. JACC Cardiovasc Interv. 2017;10:79–90.

  45. Teymen B, Aktürk S. Comparison of drug eluting balloon angioplasty to infrapopliteal artery critical lesions with or without additional pedal artery angioplasty in patients with diabetes mellitus and critical limb ischemia. J Interv Cardiol. 2018;31:400–6.

    Article  PubMed  Google Scholar 

  46. Li HK, Scarborough M, Zambellas R, Cooper C, Rombach I, Walker AS, et al. Oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA): study protocol for a randomised controlled trial. Trials. 2015;16:583.

  47. Scarborough M, Li H, Rombach I, Zambellas R, Walker S, Kumin M, et al. Oral versus intravenous antibiotics for the treatment of bone and joint infection (OVIVA): a multicentre randomised controlled trial. London: The British Editorial Society of Bone & Joint Surgery; 2017. p. 42–2.

  48. Barshes NR, Chambers JD, Cohen J, Belkin M. Cost-effectiveness in the contemporary management of critical limb ischemia with tissue loss. J Vasc Surg. 2012;56:1015–1024.e1.

    Article  PubMed  Google Scholar 

  49. Reed GW, Salehi N, Giglou PR, Kafa R, Malik U, Maier M, et al. Time to wound healing and major adverse limb events in patients with critical limb ischemia treated with endovascular revascularization. Ann Vasc Surg. 2016;36:190–8.

    Article  PubMed  Google Scholar 

  50. Barshes NR, Bechara CF, Pisimisis G, Kougias P. Preliminary experiences with early primary closure of foot wounds after lower extremity revascularization. Ann Vasc Surg. 2014;28:48–52.

    Article  PubMed  Google Scholar 

  51. Barshes NR, Mindru C, Ashong C, Rodriguez-Barradas M, Trautner BW. Treatment failure and leg amputation among patients with foot osteomyelitis. Int J Low Extrem Wounds. 2016;15:303–12.

    Article  PubMed  Google Scholar 

  52. Armstrong DG, Lavery LA. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366:1704–10.

    Article  PubMed  Google Scholar 

  53. Anderson JJ, Wallin KJ, Spencer L. Split thickness skin grafts for the treatment of non-healing foot and leg ulcers in patients with diabetes: a retrospective review. Diabet Foot Ankle 2012 [cited 2013 Feb 4];3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22403742

  54. Ramanujam CL, Stuto AC, Zgonis T. Use of local intrinsic muscle flaps for diabetic foot and ankle reconstruction: a systematic review. J Wound Care. 2018;27:S22–8.

    Article  PubMed  Google Scholar 

  55. Suh HS, Oh TS, Lee HS, Lee SH, Cho YP, Park JR, et al. A new approach for reconstruction of diabetic foot wounds using the angiosome and supermicrosurgery concept. Plast Reconstr Surg. 2016;138:702e–9e.

    Article  CAS  PubMed  Google Scholar 

  56. • Barshes NR, Flores E, Belkin M, Kougias P, Armstrong DG, Mills JL. The accuracy and cost-effectiveness of strategies used to identify peripheral artery disease among patients with diabetic foot ulcers. J Vasc Surg. 2016;64:1682–1690.e3. Meta-analysis that calculated the diagnostic accuracy of non-invasive testing modalities used to identify peripheral artery disease along with a formal decision analysis that evaluated various diagnostic strategies.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal R. Barshes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Macrovascular Complications in Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barshes, N.R., Grant, C.L. Advances in the Management of Peripheral Artery Disease. Curr Diab Rep 19, 36 (2019). https://doi.org/10.1007/s11892-019-1155-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1155-0

Keywords

Navigation