Skip to main content

Advertisement

Log in

Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell–Derived Microvesicles to Repair the Ischemic Heart

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–32.

    Article  CAS  PubMed  Google Scholar 

  2. Ibanez B, Vilahur G, Badimon JJ. Plaque progression and regression in atherothrombosis. J Thromb Haemost. 2007;5(Suppl 1):292–9.

    Article  CAS  PubMed  Google Scholar 

  3. Eitel I, de Waha S, Wohrle J, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1217–26.

    Article  PubMed  Google Scholar 

  4. Vilahur G, Badimon JJ, Bugiardini R, Badimon L. The burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur Heart J Supp. 2014;16:A7–11.

    Article  Google Scholar 

  5. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389:2239–51.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.

    Article  PubMed  Google Scholar 

  7. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60.

    Article  CAS  PubMed  Google Scholar 

  8. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.

    Article  PubMed  Google Scholar 

  9. Grigorian SL, Sanz-Ruiz R, Climent A, et al. Insights into therapeutic products, preclinical research models and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC working group on cardiovascular regenerative and reparative medicine. Cardiovasc Res. 2020.

  10. Fernandez-Aviles F, Sanz-Ruiz R, Climent AM, et al. Global overview of the Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes (TACTICS) recommendations: a comprehensive series of challenges and priorities of cardiovascular regenerative medicine. Circ Res. 2018;122:199–201.

    Article  CAS  PubMed  Google Scholar 

  11. Menasche P. Cardiac cell therapy: current status, challenges and perspectives. Arch Cardiovasc Dis. 2020;113:285–92.

    Article  PubMed  Google Scholar 

  12. Gyongyosi M, Haller PM, Blake DJ, Martin RE. Meta-analysis of cell therapy studies in heart failure and acute myocardial infarction. Circ Res. 2018;123:301–8.

    Article  PubMed  Google Scholar 

  13. Mathur A, Fernandez-Aviles F, Bartunek J, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J. 2020;41:3702–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim J, Shapiro L, Flynn A. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol Ther. 2015;151:8–15.

    Article  CAS  PubMed  Google Scholar 

  15. Sanz-Ruiz R, Fernandez-Aviles F. Autologous and allogeneic cardiac stem cell therapy for cardiovascular diseases. Pharmacol Res. 2018;127:92–100.

    Article  CAS  PubMed  Google Scholar 

  16. Arderiu G, Lambert C, Ballesta C, Moscatiello F, Vilahur G, Badimon L. Cardiovascular risk factors and differential transcriptomic profile of the subcutaneous and visceral adipose tissue and their resident stem cells. Cells. 2020;9.

  17. Onate B, Vilahur G, Camino-Lopez S, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14:625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Onate B, Vilahur G, Ferrer-Lorente R, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26:4327–36.

    Article  CAS  PubMed  Google Scholar 

  19. Fadini GP, Mehta A, Dhindsa DS, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020;41:4271–82.

    Article  PubMed  Google Scholar 

  20. Bejar MT, Hernandez-Vera R, Vilahur G, Badimon L. Bone marrow cell transplant from donors with cardiovascular risk factors increases the pro-atherosclerotic phenotype in the recipients. Am J Transplant. 2016;16:3392–403.

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of diabetes mellitus on human mesenchymal stromal cell biology and functionality: implications for autologous transplantation. Stem Cell Rev Rep. 2019;15:194–217.

    Article  PubMed  Google Scholar 

  22. van de Vyver M. Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev. 2017;26:1042–53.

    Article  PubMed  Google Scholar 

  23. Yang K, Wang XQ, He YS, et al. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grant RW, Dixit VD. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front Immunol. 2013;4:50.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dentelli P, Barale C, Togliatto G, et al. A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia. 2013;56:173–84.

    Article  CAS  PubMed  Google Scholar 

  26. Vecellio M, Spallotta F, Nanni S, et al. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes. 2014;63:2132–47.

    Article  CAS  PubMed  Google Scholar 

  27. Kim H, Han JW, Lee JY, et al. Diabetic mesenchymal stem cells are ineffective for improving limb ischemia due to their impaired angiogenic capability. Cell Transplant. 2015;24:1571–84.

    Article  PubMed  Google Scholar 

  28. Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES. Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012;20:243–52.

    Article  PubMed  Google Scholar 

  29. Policha A, Zhang P, Chang L, Lamb K, Tulenko T, DiMuzio P. Endothelial differentiation of diabetic adipose-derived stem cells. J Surg Res. 2014;192:656–63.

    Article  CAS  PubMed  Google Scholar 

  30. Fadini GP, Albiero M, Vigili de Kreutzenberg S, et al. Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care. 2013; 36: 943–9.

  31. Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle). 2015;4:623–30.

    Article  Google Scholar 

  32. Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res. 2019;115:277–91.

    Article  CAS  PubMed  Google Scholar 

  33. Ito K, Ito K. Hematopoietic stem cell fate through metabolic control. Exp Hematol. 2018;64:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henry TD, Moye L, Traverse JH. Consistently inconsistent-bone marrow mononuclear stem cell therapy following acute myocardial infarction: a decade later. Circ Res. 2016;119:404–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreadou I, Cabrera-Fuentes HA, Devaux Y, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115:1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev. 2020;36(Suppl 1):e3240.

    PubMed  Google Scholar 

  38. Zhou J, Zhang Z, Qian G. Neuropathy and inflammation in diabetic bone marrow. Diabetes Metab Res Rev. 2019;35:e3083.

    Article  PubMed  Google Scholar 

  39. Hernandez Vera R, Vilahur G, Ferrer-Lorente R, Pena E, Badimon L. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:2141–8.

    Article  CAS  PubMed  Google Scholar 

  40. Badimon L, Hernandez Vera R, Vilahur G. Atherothrombotic risk in obesity. Hamostaseologie. 2013;33:259–68.

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez Vera R, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker Fatty rats. Thromb Haemost. 2013;109:319–27.

    Article  PubMed  Google Scholar 

  42. Vasam G, Joshi S, Jarajapu YP. Impaired mobilization of vascular reparative bone marrow cells in streptozotocin-induced diabetes but not in leptin receptor-deficient db/db mice. Sci Rep. 2016;6:26131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van den Berg SM, Seijkens TT, Kusters PJ, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30:1779–88.

    Article  PubMed  Google Scholar 

  44. Li H, Liu J, Wang Y, et al. MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in type 2 diabetes. Am J Physiol Endocrinol Metab. 2017;313:E391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24.

    Article  CAS  PubMed  Google Scholar 

  46. Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015;64:1420–30.

    Article  CAS  PubMed  Google Scholar 

  47. Barman PK, Urao N, Koh TJ. Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. J Pathol. 2019;249:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis FM, Gallagher KA. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:623–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 2010;11:936–44.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu AT, Lupancu TJ, Lee MC, et al. Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chem. 2018;293:11415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kruidenier L, Chung CW, Cheng Z, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012;488:404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Wang Y, Yuan J, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215:1365–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neele AE, de Winther MPJ. Repressing the repressor: Ezh2 mediates macrophage activation. J Exp Med. 2018;215:1269–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan J, Tie G, Wang S, et al. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 2018;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shafei AE, Ali MA, Ghanem HG, et al. Mesenchymal stem cell therapy: a promising cell-based therapy for treatment of myocardial infarction. J Gene Med. 2017;19.

  56. Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 2018;33:1154–65.

    Article  CAS  PubMed  Google Scholar 

  57. Ferland-McCollough D, Maselli D, Spinetti G, et al. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone barrow of patients with diabetes. Diabetes. 2018;67:1380–94.

    Article  CAS  PubMed  Google Scholar 

  58. Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.

    Article  CAS  PubMed  Google Scholar 

  59. Rabbani PS, Soares MA, Hameedi SG, et al. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes. 2019;68:141–55.

    Article  CAS  PubMed  Google Scholar 

  60. Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia. 2019;62:1835–41.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nagaishi K, Mizue Y, Chikenji T, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep. 2017;7:8484.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cassidy FC, Shortiss C, Murphy CG, et al. Impact of type 2 diabetes mellitus on human bone marrow stromal cell number and phenotypic characteristics. Int J Mol Sci. 2020;21.

  63. Zhu M, He X, Wang XH, et al. Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications. Diabetologia. 2017;60:1822–33.

    Article  CAS  PubMed  Google Scholar 

  64. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Badimon L, Bugiardini R, Cenko E, et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J. 2017;38:1951–8.

    Article  CAS  PubMed  Google Scholar 

  66. Vilahur G, Ben-Aicha S, Badimon L. New insights into the role of adipose tissue in thrombosis. Cardiovasc Res. 2017;113:1046–54.

    Article  CAS  PubMed  Google Scholar 

  67. Rocca B, Fox KAA, Ajjan RA, et al. Antithrombotic therapy and body mass: an expert position paper of the ESC Working Group on Thrombosis. Eur Heart J. 2018;39:1672–86.

    Article  CAS  PubMed  Google Scholar 

  68. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15:639–60.

    Article  CAS  PubMed  Google Scholar 

  69. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96:E1756–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Badimon L, Onate B, Vilahur G. Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Rev Esp Cardiol (Engl Ed). 2015;68:599–611.

    Article  Google Scholar 

  71. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 2019;20.

  72. Shafei AE, Ali MA, Ghanem HG, et al. Mechanistic effects of mesenchymal and hematopoietic stem cells: new therapeutic targets in myocardial infarction. J Cell Biochem. 2018;119:5274–86.

    Article  CAS  PubMed  Google Scholar 

  73. Vilahur G, Onate B, Cubedo J, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;8:52.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Arderiu G, Pena E, Aledo R, et al. MicroRNA-145 regulates the differentiation of adipose stem cells toward microvascular endothelial cells and promotes angiogenesis. Circ Res. 2019;125:74–89.

    Article  CAS  PubMed  Google Scholar 

  75. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12.

  76. Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59:560–70.

    Article  CAS  PubMed  Google Scholar 

  77. Gustafson B, Nerstedt A, Smith U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat Commun. 2019;10:2757.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nawaz A, Aminuddin A, Kado T, et al. CD206(+) M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017;8:286.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Prasad M, Chen EW, Toh SA, Gascoigne NRJ. Autoimmune responses and inflammation in type 2 diabetes. J Leukoc Biol. 2020;107:739–48.

    Article  CAS  PubMed  Google Scholar 

  80. Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019;364.

  81. Spallanzani RG, Zemmour D, Xiao T, et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci Immunol. 2019;4.

  82. Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2:97–109.

    Article  PubMed  Google Scholar 

  83. Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34:2559–73.

    Article  CAS  PubMed  Google Scholar 

  84. Ferrer-Lorente R, Bejar MT, Tous M, Vilahur G, Badimon L. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function. Diabetologia. 2014;57:246–56.

    Article  PubMed  Google Scholar 

  85. Ingram DA, Mead LE, Tanaka H, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752–60.

    Article  CAS  PubMed  Google Scholar 

  86. Tura O, Skinner EM, Barclay GR, et al. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells. 2013;31:338–48.

    Article  CAS  PubMed  Google Scholar 

  87. Toshner M, Dunmore BJ, McKinney EF, et al. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells. PLoS One. 2014;9:e91334.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.

    Article  CAS  PubMed  Google Scholar 

  89. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007;109:4761–8.

    Article  CAS  PubMed  Google Scholar 

  90. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lyons CJ, O’Brien T. The functionality of endothelial-colony-forming cells from patients with diabetes mellitus. Cells. 2020;9.

  92. Jarajapu YP, Hazra S, Segal M, et al. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One. 2014;9:e93965.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li H, Zhang X, Guan X, et al. Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells. Cardiovasc Diabetol. 2012;11:46.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal. 2008;10:1895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Suades R, Padro T, Badimon L. The role of blood-borne microparticles in inflammation and hemostasis. Semin Thromb Hemost. 2015;41:590–606.

    Article  CAS  PubMed  Google Scholar 

  96. Ridger VC, Boulanger CM, Angelillo-Scherrer A, et al. Microvesicles in vascular homeostasis and diseases Position. Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost. 2017;117:1296–316.

    Article  PubMed  Google Scholar 

  97. Chiva-Blanch G, Badimon L. Cross-talk between lipoproteins and inflammation: the role of microvesicles. J Clin Med. 2019;8.

  98. Badimon L, Suades R, Vilella-Figuerola A, et al. Liquid Biopsies: Microvesicles in Cardiovascular Disease. Antioxid Redox Signal. 2020;33:645–62.

    Article  CAS  PubMed  Google Scholar 

  99. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article  PubMed  Google Scholar 

  100. Suades R, Padro T, Crespo J, et al. Liquid biopsy of extracellular microvesicles predicts future major ischemic events in genetically characterized familial hypercholesterolemia patients. Arterioscler Thromb Vasc Biol. 2019;39:1172–81.

    Article  CAS  PubMed  Google Scholar 

  101. Chiva-Blanch G, Padro T, Alonso R, et al. Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2019;39:945–55.

    Article  CAS  PubMed  Google Scholar 

  102. Badimon L. Monocyte-platelet complexes in myocardial infarction: sub-sets and platelet-derived microvesicles matter. Thromb Haemost. 2018;118:1854–5.

    Article  PubMed  Google Scholar 

  103. Chiva-Blanch G, Suades R, Crespo J, et al. CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol. 2016;208:147–9.

    Article  PubMed  Google Scholar 

  104. Suades R, Padro T, Vilahur G, et al. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost. 2015;13:1776–86.

    Article  CAS  PubMed  Google Scholar 

  105. Wernly B, Mirna M, Rezar R, et al. Regenerative cardiovascular therapies: stem cells and beyond. Int J Mol Sci. 2019;20.

  106. Broughton KM, Wang BJ, Firouzi F, et al. Mechanisms of cardiac repair and regeneration. Circ Res. 2018;122:1151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sluijter JPG, Davidson SM, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114:19–34.

    Article  CAS  PubMed  Google Scholar 

  108. Wiklander OPB, Brennan MA, Lotvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11.

  109. Amosse J, Martinez MC, Le Lay S. Extracellular vesicles and cardiovascular disease therapy. Stem Cell Investig. 2017;4:102.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8:1419.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol. 2018;119:125–37.

    Article  CAS  PubMed  Google Scholar 

  113. Chen Q, Liu Y, Ding X, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465:103–14.

    Article  CAS  PubMed  Google Scholar 

  114. Wendt S, Goetzenich A, Goettsch C, et al. Evaluation of the cardioprotective potential of extracellular vesicles - a systematic review and meta-analysis. Sci Rep. 2018;8:15702.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Deng W, Tang T, Hou Y, et al. Extracellular vesicles in atherosclerosis. Clin Chim Acta. 2019;495:109–17.

    Article  CAS  PubMed  Google Scholar 

  116. Zhao L, Hu C, Zhang P, Jiang H, Chen J. Genetic communication by extracellular vesicles is an important mechanism underlying stem cell-based therapy-mediated protection against acute kidney injury. Stem Cell Res Ther. 2019;10:119.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2085–92.

    Article  CAS  PubMed  Google Scholar 

  118. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.

    Article  CAS  PubMed  Google Scholar 

  119. Wang QL, Wang HJ, Li ZH, Wang YL, Wu XP, Tan YZ. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium. J Cell Mol Med. 2017;21:1751–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114:105564.

    Article  CAS  PubMed  Google Scholar 

  121. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43:52–68.

    Article  CAS  PubMed  Google Scholar 

  122. Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41:835–42.

    Article  CAS  PubMed  Google Scholar 

  123. Lambert C, Arderiu G, Bejar MT, et al. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther. 2019;10:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med. 2018;60:81–91.

    Article  CAS  PubMed  Google Scholar 

  125. Rezaie J, Nejati V, Khaksar M, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018;374:555–65.

    Article  CAS  PubMed  Google Scholar 

  126. Trinh NT, Yamashita T, Ohneda K, et al. Increased expression of EGR-1 in diabetic human adipose tissue-derived mesenchymal stem cells reduces their wound healing capacity. Stem Cells Dev. 2016;25:760–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morris AD, Dalal S, Li H, Brewster LP. Human diabetic mesenchymal stem cells from peripheral arterial disease patients promote angiogenesis through unique secretome signatures. Surgery. 2018;163:870–6.

    Article  PubMed  Google Scholar 

  128. Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med. 2017;21:349–63.

    Article  CAS  PubMed  Google Scholar 

  129. Davidson SM, Yellon DM. Exosomes and cardioprotection - a critical analysis. Mol Aspects Med. 2018;60:104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Povsic TJ, Sanz-Ruiz R, Climent AM, et al. Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Fail. 2021.

  131. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  132. Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222–32.

    Article  CAS  PubMed  Google Scholar 

  133. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113–21.

    Article  PubMed  Google Scholar 

  134. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209.

    Article  CAS  PubMed  Google Scholar 

  135. Colombo A, Castellani M, Piccaluga E, et al. Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J Cardiovasc Med (Hagerstown). 2011;12:239–48.

    Article  Google Scholar 

  136. Piepoli MF, Vallisa D, Arbasi M, et al. Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study). Eur J Heart Fail. 2010;12:172–80.

    Article  PubMed  Google Scholar 

  137. Ang KL, Chin D, Leyva F, et al. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med. 2008;5:663–70.

    Article  PubMed  Google Scholar 

  138. Huikuri HV, Kervinen K, Niemela M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008;29:2723–32.

    Article  PubMed  Google Scholar 

  139. Cao F, Sun D, Li C, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J. 2009;30:1986–94.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wohrle J, von Scheidt F, Schauwecker P, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013;102:765–70.

    Article  PubMed  Google Scholar 

  141. Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109:428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Roncalli J, Mouquet F, Piot C, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J. 2011;32:1748–57.

    Article  PubMed  Google Scholar 

  143. Hu S, Liu S, Zheng Z, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol. 2011;57:2409–15.

    Article  PubMed  Google Scholar 

  144. Perin EC, Silva GV, Zheng Y, et al. Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase-bright stem cells in patients with ischemic heart failure. Am Heart J. 2012;163:415–21, 21 e1.

  145. San Roman JA, Sanchez PL, Villa A, et al. Comparison of different bone marrow-derived stem cell approaches in reperfused STEMI. A multicenter, prospective, randomized, open-labeled TECAM trial. J Am Coll Cardiol. 2015;65:2372–82.

    Article  PubMed  Google Scholar 

  146. Lee JW, Lee SH, Youn YJ, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29:23–31.

    Article  PubMed  Google Scholar 

  147. Traverse JH, McKenna DH, Harvey K, et al. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160:428–34.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Patila T, Lehtinen M, Vento A, et al. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: a prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Heart Lung Transplant. 2014;33:567–74.

    Article  PubMed  Google Scholar 

  149. Nasseri BA, Ebell W, Dandel M, et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35:1263–74.

    Article  CAS  PubMed  Google Scholar 

  150. Santoso T, Siu CW, Irawan C, et al. Endomyocardial implantation of autologous bone marrow mononuclear cells in advanced ischemic heart failure: a randomized placebo-controlled trial (END-HF). J Cardiovasc Transl Res. 2014;7:545–52.

    Article  PubMed  Google Scholar 

  151. Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133(+) progenitor cells to promote angiogenesis in patients with refractory angina: final results of the PROGENITOR randomized trial. Circ Res. 2014;115:950–60.

    Article  CAS  PubMed  Google Scholar 

  152. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307:1717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Naseri MH, Madani H, Ahmadi Tafti SH, et al. COMPARE CPM-RMI trial: intramyocardial transplantation of autologous bone marrow-derived CD133+ cells and MNCs during CABG in patients with recent MI: a phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial. Cell J. 2018;20:267–77.

    PubMed  PubMed Central  Google Scholar 

  154. Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Quyyumi AA, Waller EK, Murrow J, et al. CD34(+) cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Am Heart J. 2011;161:98–105.

    Article  PubMed  Google Scholar 

  156. Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA. 2014;311:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Qayyum AA, Mathiasen AB, Mygind ND, et al. Adipose-derived stromal cells for treatment of patients with chronic ischemic heart disease (MyStromalCell Trial): a randomized placebo-controlled study. Stem Cells Int. 2017;2017:5237063.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nicolau JC, Furtado RHM, Silva SA, et al. Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: a multicenter, double-blind randomized trial. Clin Cardiol. 2018;41:392–9.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ryabov VV, Kirgizova MA, Suslova TE, Karas SI, Markov VA, Karpov RS. Relationships of growth factors, proinflammatory cytokines, and anti-inflammatory cytokines with long-term clinical results of autologous bone marrow mononuclear cell transplantation in STEMI. PLoS One. 2017;12:e0176900.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Noiseux N, Mansour S, Weisel R, et al. The IMPACT-CABG trial : a multicenter, randomized clinical trial of CD133(+) stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2016;152:1582-8 e2.

    Article  CAS  PubMed  Google Scholar 

  161. Quyyumi AA, Vasquez A, Kereiakes DJ, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120:324–31.

    Article  CAS  PubMed  Google Scholar 

  162. Wojakowski W, Jadczyk T, Michalewska-Wludarczyk A, et al. Effects of transendocardial delivery of bone marrow-derived CD133(+) cells on left ventricle perfusion and function in patients with refractory angina: final results of randomized, double-blinded, placebo-controlled REGENT-VSEL trial. Circ Res. 2017;120:670–80.

    Article  CAS  PubMed  Google Scholar 

  163. Henry TD, Pepine CJ, Lambert CR, et al. The Athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction. Catheter Cardiovasc Interv. 2017;89:169–77.

    Article  PubMed  Google Scholar 

  164. Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trialdagger. Eur Heart J. 2016;37:256–63.

    Article  PubMed  Google Scholar 

  165. Soetisna TW, Sukmawan R, Setianto B, et al. Combined transepicardial and transseptal implantation of autologous CD 133+ bone marrow cells during bypass grafting improves cardiac function in patients with low ejection fraction. J Card Surg. 2020;35:740–6.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.

    Article  PubMed  Google Scholar 

  167. Pokushalov E, Romanov A, Chernyavsky A, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–8.

    Article  PubMed  Google Scholar 

  168. Steinhoff G, Nesteruk J, Wolfien M, et al. Cardiac function improvement and bone marrow response -: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133(+) Application After Myocardial Infarction. EBioMedicine. 2017;22:208–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

LB has been funded by PID2019-107160RB-I00 from the Spanish Ministry of Science and Innovation and FEDER “Una Manera de Hacer Europa,” Red TerCel (Terapia Celular) RD16/0011/0018 , and CIBERCV from Carlos III Institute and European Union-H2020 grants. GV is funded by PGC2018-094025-B-I00 from Spanish Ministry of Science and Innovation and FEDER “Una Manera de Hacer Europa”. LB and GV thank the support of the Generalitat of Catalunya (Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat, 2017 SGR 1480) and the Fundación Investigación Cardiovascular-Fundación Jesus Serra for their continuous support.

Author information

Authors and Affiliations

Authors

Contributions

GV wrote the review; PHN contributed to the writing of the review and the figures; LB revised and corrected the entire review.

Corresponding author

Correspondence to Lina Badimon.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals.

Not applicable.

Consent to Participate.

Not applicable.

Consent for Publication.

Not applicable.

Conflicts of Interest

LB declares to have acted as SAB member of Sanofi, Bayer, AstraZeneca, and the International Aspirin Foundation; has a research grant from AstraZeneca, speaker fees from Lilly, MSD-Boerhinger, and AstraZeneca; and to have founded the Spin-offs Glycardial Diagnostics SL. and IVESTATIN Therapeutics SL. (all outside of the area of the present work). GV has a research grant from AstraZeneca and is founder of the Spin-offs Glycardial Diagnostics SL. and IVESTATIN Therapeutics SL. (all outside of the area of the present work).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilahur, G., Nguyen, P.H. & Badimon, L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell–Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 36, 933–949 (2022). https://doi.org/10.1007/s10557-021-07208-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07208-9

Keywords

Navigation