Skip to main content

Advertisement

Log in

The Effect of Sodium-Glucose Co-transporter-2 (SGLT-2) Inhibitors on Cardiometabolic Profile; Beyond the Hypoglycaemic Action

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) has growing prevalence worldwide and major clinical implications, chiefly cardiovascular (CV) and renal disease burden. Sodium-glucose co-transporter (SGLT)-2 inhibitors are a new drug class in the management of T2DM with a mechanism of action independent of insulin. In addition to their hypoglycaemic effect, SGLT-2 inhibitors appear to have haemodynamic and nephroprotective effects. Studies have consistently showed a modest but significant blood pressure (BP) reduction. Metabolic benefits are also attributed to SGLT-2 inhibitors with a modest but consistent body weight decrease recorded along with improvements in lipid profile and uric acid levels. Remarkable findings of significant cardioprotective effects came from the recent EMPA-REG study with a particular focus on heart failure. In the kidney, SGLT-2 inhibitors reduce hyperfiltration, a precipitant of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABPM:

Ambulatory blood pressure monitoring

ACR:

Albumin to creatinine ratio

BP:

Blood pressure

CKD:

Chronic kidney disease

CV:

Cardiovascular

DBP:

Diastolic blood pressure

GFR:

Glomerular filtration rate

HCZT:

Hydrochlorothiazide

HDL:

High density lipoprotein

HR:

Hazard ratio

LDL:

Low density lipoprotein

OD:

Once daily

RAAS:

Renin-aldosterone-angiotensin system

SGLT:

Sodium-glucose co-transporter

SBP:

Systolic blood pressure

TG:

Triglycerides

TGF:

Tubuloglomerular feedback

VLDL:

Very low density lipoprotein

References

  1. Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest. 1994;93(1):397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wright EM. Renal Na(+)-glucose cotransporters. American journal of physiology Renal physiology. 2001;280(1):F10–8.

    CAS  PubMed  Google Scholar 

  3. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.

    Article  CAS  PubMed  Google Scholar 

  4. Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2016;6(2):e009417.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seino Y, Sasaki T, Fukatsu A, Ubukata M, Sakai S, Samukawa Y. Efficacy and safety of luseogliflozin as monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, phase 3 study. Curr Med Res Opin. 2014;30(7):1245–55.

    Article  CAS  PubMed  Google Scholar 

  8. Bode B, Stenlof K, Sullivan D, Fung A, Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hospital practice. 2013;41(2):72–84.

    Article  PubMed  Google Scholar 

  9. Kaku K, Kiyosue A, Inoue S, Ueda N, Tokudome T, Yang J, et al. Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab. 2014;16(11):1102–10.

    Article  CAS  PubMed  Google Scholar 

  10. Inagaki N, Kondo K, Yoshinari T, Takahashi N, Susuta Y, Kuki H. Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, phase III study. Expert Opin Pharmacother. 2014;15(11):1501–15.

    Article  CAS  PubMed  Google Scholar 

  11. Inagaki N, Harashima S, Maruyama N, Kawaguchi Y, Goda M, Iijima H. Efficacy and safety of canagliflozin in combination with insulin: a double-blind, randomized, placebo-controlled study in Japanese patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2016;15:89.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–33.

    Article  CAS  PubMed  Google Scholar 

  13. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37(6):1650–9.

    Article  PubMed  Google Scholar 

  14. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–31.

    Article  CAS  PubMed  Google Scholar 

  16. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E, Utsuno A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ji L, Ma J, Li H, Mansfield TA, T'Joen CL, Iqbal N, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study. Clin Ther. 2014;36(1):84–100 e9.

    Article  CAS  PubMed  Google Scholar 

  18. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  19. Roden M, Weng J, Eilbracht J, Delafont B, Kim G, Woerle HJ, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Diabetes Endocrinol. 2013;1(3):208–19.

    Article  CAS  PubMed  Google Scholar 

  20. Kaku K, Watada H, Iwamoto Y, Utsunomiya K, Terauchi Y, Tobe K, et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: a combined phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:65.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Townsend RR, Machin I, Ren J, Trujillo A, Kawaguchi M, Vijapurkar U, et al. Reductions in mean 24-hour ambulatory blood pressure after 6-week treatment with canagliflozin in patients with type 2 diabetes mellitus and hypertension. J Clin Hypertens. 2016;18(1):43–52.

    Article  CAS  Google Scholar 

  22. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.

    Article  PubMed  Google Scholar 

  23. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. Journal of the American Society of Hypertension: JASH. 2014;8(4):262–75. e9

    Article  CAS  PubMed  Google Scholar 

  24. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Diabetes Endocrinol. 2016;4(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  25. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.

    Article  CAS  PubMed  Google Scholar 

  26. Devineni D, Vaccaro N, Polidori D, Rusch S, Wajs E. Effects of hydrochlorothiazide on the pharmacokinetics, pharmacodynamics, and tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Clin Ther. 2014;36(5):698–710.

    Article  CAS  PubMed  Google Scholar 

  27. O'Hare JA, Ferriss JB, Brady D, Twomey B, O'Sullivan DJ. Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension. 1985;7(6 Pt 2):II43–8.

    PubMed  Google Scholar 

  28. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005;54(12):3427–34.

    Article  CAS  PubMed  Google Scholar 

  29. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42(5):878–84.

    Article  CAS  PubMed  Google Scholar 

  30. Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28.

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Ittersum FJ, Schram MT, van der Heijden-Spek JJ, Van Bortel LM, Elte JW, Biemond P, et al. Autonomic nervous function, arterial stiffness and blood pressure in patients with type I diabetes mellitus and normal urinary albumin excretion. J Hum Hypertens. 2004;18(11):761–8.

    Article  PubMed  Google Scholar 

  32. Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes & metabolism. 2003;29(5):478–85.

    Article  CAS  Google Scholar 

  33. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Madero M, Arriaga JC, Jalal D, Rivard C, McFann K, Perez-Mendez O, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: a randomized controlled trial. Metab Clin Exp. 2011;60(11):1551–9.

    Article  CAS  PubMed  Google Scholar 

  35. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2011;13(10):928–38.

    Article  CAS  PubMed  Google Scholar 

  36. Foote C, Perkovic V, Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab Vasc Dis Res. 2012;9(2):117–23.

    Article  PubMed  Google Scholar 

  37. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J. Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med. 2013;125(3):181–9.

    Article  PubMed  Google Scholar 

  39. Lehman R, Yudkin JS, Krumholz H. Licensing drugs for diabetes. BMJ. 2010;341:c4805.

    Article  PubMed  Google Scholar 

  40. Bolinder J, Ljunggren O, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  41. Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes. 2008;32(4):619–28.

    Article  CAS  Google Scholar 

  42. Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, et al. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association. 2015;13(3):561–8. e1

    Article  Google Scholar 

  43. Fabbrini E, Magkos F. Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 2015;7(6):4995–5019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, Koide K, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.

    Article  CAS  PubMed  Google Scholar 

  45. Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, Tomeno W, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11(1):e0146337.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784–94.

    Article  CAS  PubMed  Google Scholar 

  47. Komiya C, Tsuchiya K, Shiba K, Miyachi Y, Furuke S, Shimazu N, et al. Ipragliflozin improves hepatic steatosis in obese mice and liver dysfunction in type 2 diabetic patients irrespective of body weight reduction. PLoS One. 2016;11(3):e0151511.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Zhang L, Wu B, Song H, An Z, Li S. Dapagliflozin treatment for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2014;30(3):204–21.

    Article  CAS  PubMed  Google Scholar 

  50. Davies MJ, Trujillo A, Vijapurkar U, Damaraju CV, Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17(4):426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J, Nakanishi T, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lytvyn Y, Skrtic M, Yang GK, Yip PM, Perkins BA, Cherney DZ. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. American journal of physiology Renal physiology. 2015;308(2):F77–83.

    Article  CAS  PubMed  Google Scholar 

  53. Cheeseman C. Solute carrier family 2, member 9 and uric acid homeostasis. Curr Opin Nephrol Hypertens. 2009;18(5):428–32.

    Article  CAS  PubMed  Google Scholar 

  54. Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Macdonald FR, Peel JE, Jones HB, Mayers RM, Westgate L, Whaley JM, et al. The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes Metab. 2010;12(11):1004–12.

    Article  CAS  PubMed  Google Scholar 

  56. Naznin F, Sakoda H, Okada T, Tsubouchi H, Waise TM, Arakawa K et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol. 2016.

  57. Han JH, Oh TJ, Lee G, Maeng HJ, Lee DH, Kim KM et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE−/− mice fed a western diet. Diabetologia. 2016.

  58. Hayashi A, Takano K, Kawai S, Shichiri M. SGLT2 inhibitors provide an effective therapeutic option for diabetes complicated with insulin antibodies. Endocr J. 2016;63(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  59. Shigeno R, Horie I, Ando T, Abiru N, Kawakami A. Low-carbohydrate diet combined with SGLT2 inhibitor for refractory hyperglycemia caused by insulin antibodies. Diabetes Res Clin Pract. 2016;116:43–5.

    Article  CAS  PubMed  Google Scholar 

  60. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Standards of medical care in diabetes—2015: summary of revisions. Diabetes Care. 2015;38 Suppl:S4.

  62. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. 2006;116(2):288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. American journal of physiology Renal physiology. 2014;306(2):F194–204.

    Article  CAS  PubMed  Google Scholar 

  64. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cherney D, Lund SS, Perkins BA, Groop PH, Cooper ME, Kaspers S et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia 2016.

  66. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–97.

    Article  CAS  PubMed  Google Scholar 

  67. Sasson AN, Cherney DZ. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J Diabetes. 2012;3(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Turkstra E, Braam B, Koomans HA. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. Journal of the American Society of Nephrology: JASN. 1998;9(9):1596–603.

    CAS  PubMed  Google Scholar 

  69. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35(10):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther. 2013;345(3):464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends in endocrinology and metabolism: TEM. 2004;15(4):166–9.

    Article  CAS  PubMed  Google Scholar 

  72. Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundstrom J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. The Lancet Diabetes Endocrinol. 2016;4(5):411–9.

    Article  CAS  PubMed  Google Scholar 

  73. McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA. Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. The Lancet Diabetes Endocrinol. 2014;2(10):843–51.

    Article  CAS  PubMed  Google Scholar 

  74. Raschi E, Poluzzi E, Koci A, Antonazzo IC, Marchesini G, De Ponti F. Dipeptidyl peptidase-4 inhibitors and heart failure: analysis of spontaneous reports submitted to the FDA adverse event reporting system. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2016;26(5):380–6.

    Article  CAS  PubMed  Google Scholar 

  75. Davis BR, Piller LB, Cutler JA, Furberg C, Dunn K, Franklin S, et al. Role of diuretics in the prevention of heart failure: the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2006;113(18):2201–10.

    Article  CAS  PubMed  Google Scholar 

  76. Erqou S, Lee CT, Suffoletto M, Echouffo-Tcheugui JB, de Boer RA, van Melle JP, et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail. 2013;15(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  77. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  78. van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 2008;117(1):43–51.

    Article  PubMed  Google Scholar 

  79. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.

    Article  PubMed  Google Scholar 

  80. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–34.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A Unifying Hypothesis Diabetes care. 2016;39(7):1115–22.

    Article  PubMed  Google Scholar 

  82. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14.

    Article  PubMed  Google Scholar 

  83. Abassi Z, Leor J, Landa N, Younis F, Hollander K, Mayoux E, et al. Os 05-04 Empagliflozin exerts cardio- and Nephro-protective effects in Cohen-Rosenthal diabetic hypertensive rats. J Hypertens. 2016;34(Suppl 1):e58–9.

    Article  PubMed  Google Scholar 

  84. Singh JS, Fathi A, Vickneson K, Mordi I, Mohan M, Houston JG, et al. Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol. 2016;15:97.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Andrews TJ, Cox RD, Parker C, Kolb J. Euglycemic diabetic ketoacidosis with elevated acetone in a patient taking a sodium-glucose cotransporter-2 (SGLT2) inhibitor. J Emerg Med. 2016.

  86. Bader N, Mirza L. Euglycemic diabetic ketoacidosis in a 27 year-old female patient with type-1-diabetes treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor Canagliflozin. Pakistan journal of medical sciences. 2016;32(3):786–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kohler S, Salsali A, Hantel S, Kaspers S, Woerle HJ, Kim G, et al. Safety and tolerability of empagliflozin in patients with type 2 diabetes. Clin Ther. 2016;38(6):1299–313.

    Article  CAS  PubMed  Google Scholar 

  88. Fioretto P, Giaccari A, Sesti G. Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus. Cardiovasc Diabetol. 2015;14:142.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini Lioudaki.

Ethics declarations

Funding

None.

Conflict of Interest

Dr. Eirini Lioudaki declares that she has no conflict of interest. Dr. Emmanouil Androulakis declares that he has no conflict of interest. Dr. Martin Whyte declares that he has no conflict of interest. Dr. Konstantinos Stylianou declares that he has no conflict of interest. Professor Eugenios Daphnis declares that he has no conflict of interest. Professor Emmanouil Ganotakis declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lioudaki, E., Androulakis, E.S., Whyte, M. et al. The Effect of Sodium-Glucose Co-transporter-2 (SGLT-2) Inhibitors on Cardiometabolic Profile; Beyond the Hypoglycaemic Action. Cardiovasc Drugs Ther 31, 215–225 (2017). https://doi.org/10.1007/s10557-017-6724-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-017-6724-3

Keywords

Navigation