Skip to main content

Glucose Lowering Efficacy and Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitors

  • Chapter
  • First Online:
Diabetes: from Research to Clinical Practice

Abstract

In type 2 diabetes, the maladaptive upregulation of sodium-glucose cotransporter 2 (SGLT2) protein expression and activity contribute to the maintenance of hyperglycemia. By inhibiting these proteins, SGLT2 inhibitors increase urinary glucose excretion (UGE) that leads to fall in plasma glucose concentrations and improvement in all glycemic parameters. Clinical studies have demonstrated that in patients with type 2 diabetes, SGLT2 inhibitors resulted in sustained reductions in glycated hemoglobin (HbA1C), body weight, blood pressure and serum uric acid levels. Interestingly, the cardiovascular (CV) and renal outcome trials revealed the beneficial effects of SGLT2 inhibitors on CV and renal functions. Because the benefits were seen soon after initiation of SGLT2 inhibitors, these observations are explained by effects beyond their glucose lowering capacity. SGLT2 inhibitors also reduce liver fat in patients with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. This chapter describes the basic information about SGLT2 inhibitors, current status of SGLT2 inhibitors in the management of type 2 diabetes and their beneficial effects in addition to glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

CANVAS:

Canagliflozin Cardiovascular Assessment Study

CK:

cytokeratin

CKD:

chronic kidney disease

CV:

cardiovascular

CVD:

cardiovascular disease

CVD-REAL:

Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors

CVOT:

cardiovascular outcome trial

DECLARE TIMI 58:

Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58

DKA:

diabetic ketoacidosis

eGFR:

estimated glomerular filtration rate

E-LIFT:

Effect of Empagliflozin on Liver Fat

EMA:

European Medicines Agency

EMPA-REG OUTCOME:

Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose

FGF 21:

fibroblast growth factor 21

FRG:

familial renal glucosuria

GGT:

gamma glutamyl transpeptidase

GLP-1r:

glucagon like peptide-1 receptor

GLUT:

glucose transporter

HbA1C:

glycated hemoglobin

HGO:

hepatic glucose output

MACE:

major adverse cardiovascular events

MRI:

magnetic resonance imaging

NAFLD:

nonalcoholic fatty liver disease

NASH:

nonalcoholic steatohepatitis

NHE:

sodium hydrogen exchanger

PCT:

proximal convoluted tubule

PDFF:

proton density fat fraction

SGLT2:

sodium-glucose cotransporter 2

UGE:

urinary glucose excretion

US FDA:

The United States Food and Drug Administration

References

  • Abdul GM, DeFronzo R (2013) Dapagliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother 14:1695–1703

    Google Scholar 

  • Akuta N, Watanabe C, Kawamura Y et al (2017) Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies. Hepatol Commun 1:46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azharuddin M, Adil M, Ghosh P, Sharma M (2018) Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: a systematic literature review and Bayesian network meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 146:180–190

    CAS  PubMed  Google Scholar 

  • Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233

    CAS  PubMed  Google Scholar 

  • Baker WL, Buckley LF, Kelly MS et al (2017) Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc 6:e005686

    PubMed  PubMed Central  Google Scholar 

  • Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384

    CAS  PubMed  Google Scholar 

  • Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH (2019) Fournier gangrene associated with sodium-glucose Cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann Intern Med 170(11):764–769

    PubMed  Google Scholar 

  • Blau JE, Bauman V, Conway EM et al (2018) Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 3:99123. https://doi.org/10.1172/jci.insight.99123

    Article  PubMed  Google Scholar 

  • Bolinder J, Ljunggren Ö, Kullberg J et al (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031

    CAS  PubMed  Google Scholar 

  • Cai X, Yang W, Gao X et al (2018) The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity (Silver Spring) 26:70–80

    CAS  Google Scholar 

  • Cefalu WT (2014) Paradoxical insights into whole body metabolic adaptations following SGLT2 inhibition. J Clin Invest 124:485–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cefalu WT, Leiter LA, Yoon KH et al (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52-week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950

    CAS  PubMed  Google Scholar 

  • Cheng L, Li YY, Hu W et al (2019) Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment: a meta-analysis of randomized controlled trials. Diabetes Metab 45:436–445. https://doi.org/10.1016/j.diabet.2019.01.010. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Chino Y, Samukawa Y, Sakai S et al (2014) SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 35:391–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosentino F, Grant PJ, Aboyans V et al (2019) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J pii: ehz486. https://doi.org/10.1093/eurheartj/ehz486. [Epub ahead of print]

  • Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetologia 61(12):2461–2498

    PubMed  Google Scholar 

  • Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA (2012) Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring) 20:1645–1652

    CAS  Google Scholar 

  • Eriksson JW, Lundkvist P, Jansson PA et al (2018) Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 61:1923–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency (2017) SGLT2 inhibitors: information on potential risk of toe amputation to be included in prescribing information. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/SGLT2_inhibitors_Canagliflozin_20/European_Commission_final_decision/WC500227101.pdf. Accessed 12 Nov 2017

  • Faulhaber-Walter R, Chen L, Oppermann M et al (2008) Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. J Am Soc Nephrol 19:722–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinand KC, Izzo JL, Lee J et al (2019) Antihyperglycemic and blood pressure effects of empagliflozin in black patients with type 2 diabetes mellitus and hypertension. Circulation 139:2098–2109

    CAS  PubMed  Google Scholar 

  • Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E (2015) Energy balance after sodium–glucose cotransporter 2 inhibition. Diabetes Care 38:1730–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114

    PubMed  Google Scholar 

  • Fioretto P, Stefansson BV, Johnsson E, Cain VA, Sjöström CD (2016) Dapagliflozin reduces albuminuria over 2 years in patients with type 2 diabetes mellitus and renal impairment. Diabetologia 59:2036–2039

    PubMed  PubMed Central  Google Scholar 

  • Garvey WT, Van Gaal L, Leiter LA et al (2018) Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 85:32–37

    CAS  PubMed  Google Scholar 

  • Hannedouche TP, Delgado AG, Gnionsahe DA, Boitard C, Lacour B, JP G¨u (1990) Renal hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Kidney Int 37:1126–1133

    CAS  PubMed  Google Scholar 

  • Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Phys 241:F85–F93

    CAS  Google Scholar 

  • Hummel CS, Lu C, Loo DD et al (2011) Glucose transport by human renal NA+/d-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol 300:C721

    CAS  Google Scholar 

  • Inzucchi SE, Zinman B, Wanner C et al (2015) SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 12:90–100

    CAS  PubMed  Google Scholar 

  • Jabbour S, Seufert J, Scheen A et al (2017) Dapagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes Metab 20:620–628

    PubMed  PubMed Central  Google Scholar 

  • Johnsson Kristina M, Agata P, Bridget S, Jennifer S et al (2013) Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J Diabetes Complicat 27:479–484

    CAS  Google Scholar 

  • Kasichayanula S, Liu X, LaCreta F, Griffen S, Boulton D (2014) Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 53:17–27

    CAS  PubMed  Google Scholar 

  • Kawasoe S, Maruguchi Y, Kajiya S et al (2017) Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol 18:23

    PubMed  PubMed Central  Google Scholar 

  • Kim G, Gerich J, Salsali A, Hach T, Hantel S, Woerle HJ (2014) Empagliflozin (EMPA) increases genital infections but not Urinary Tract Infections (UTIs) in pooled data from four pivotal phase III trials. Diabetologie und Stoffwechsel 9:140

    Google Scholar 

  • Kohan DE, Fioretto P, Tang W, List JF (2014) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 85:962–971

    CAS  PubMed  Google Scholar 

  • Komala MG, Panchapakesan U, Pollock C, Mather A (2013) Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens 22:113–119

    CAS  PubMed  Google Scholar 

  • Kosiborod M, Cavender MA, Fu AZ et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose Cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchay MS, Krishan S, Mishra SK et al (2018) Effect of Empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care 41:1801–1808

    CAS  PubMed  Google Scholar 

  • Lai LL, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK (2019) Empagliflozin for the treatment of nonalcoholic Steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. https://doi.org/10.1007/s10620-019-5477-1. [Epub ahead of print]

  • Latva-Rasku A, Honka MJ, Kullberg J et al (2019) The SGLT2 inhibitor Dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care 42:931–937. https://doi.org/10.2337/dc18-1569.. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Lee YJ, Han HJ (2007) Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl 106:S27–S35

    CAS  Google Scholar 

  • Lee TM, Chang NC, Lin SZ (2017) Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 104:298–310

    CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Verma S (2016) Empagliflozin’s fuel hypothesis: not so soon. Cell Metab 24:200–202

    CAS  PubMed  Google Scholar 

  • Lovshin JA, Gilbert RE (2015) Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective? Curr Hypertens Rep 17:551

    CAS  PubMed  Google Scholar 

  • Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI (2017) Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136:1643–1658

    CAS  PubMed  Google Scholar 

  • McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    CAS  PubMed  Google Scholar 

  • Muskiet MHA, van Bommel EJM, van Raalte DH (2016) Antihypertensive effects of SGLT2 inhibitors in type 2 diabetes. Lancet Diabetes Endocrinol 4:188–189

    PubMed  Google Scholar 

  • Nauck MA (2014) Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther 8:1335–1380

    PubMed  PubMed Central  Google Scholar 

  • Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657

    CAS  PubMed  Google Scholar 

  • Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029

    PubMed  Google Scholar 

  • Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. https://doi.org/10.1056/NEJMoa1811744. [ahead of print]

  • Pollock C, Stefánsson B, Reyner D et al (2019) Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(19)30086-5. [ahead of print]

  • Ptaszynska A, Johnsson KM, Parikh SJ, de Bruin TW, Apanovitch AM, List JF (2014) Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf 37:815–829

    CAS  PubMed  Google Scholar 

  • Richette P, Perez-Ruiz F, Doherty M et al (2014) Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol 10:654–661

    CAS  PubMed  Google Scholar 

  • Rosenstock J, Ferrannini E (2015) Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38(9):1638–1642

    CAS  PubMed  Google Scholar 

  • Rosenstock J, Aggarwal N, Polidori D et al (2012) Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35:1232–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sano M, Takei M, Shiraishi Y, Suzuki Y (2016) Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 8:844–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141

    CAS  PubMed  Google Scholar 

  • Sato T, Aizawa Y, Yuasa S et al (2018) The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 17:6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339

    PubMed  PubMed Central  Google Scholar 

  • Sattar N, Fitchett D, Hantel S, George JT, Zinman B (2018) Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME trial. Diabetologia 61:2155–2163. https://doi.org/10.1007/s00125-018-4702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seko Y, Sumida Y, Sasaki K et al (2018) Effects of canagliflozin, an SGLT2 inhibitor, on hepatic function in Japanese patients with type 2 diabetes mellitus: pooled and subgroup analyses of clinical trials. J Gastroenterol 53:140–151

    CAS  PubMed  Google Scholar 

  • Sha S, Polidori D, Heise T et al (2014) Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 16:1087–1095

    CAS  PubMed  Google Scholar 

  • Škrtić M, Cherney DZ (2015) Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens 24:96–103

    PubMed  Google Scholar 

  • Sonesson C, Johansson PA, Johnsson E, Gause-Nilsson I (2016) Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol 15:37

    PubMed  PubMed Central  Google Scholar 

  • Sumida Y, Murotani K, Saito M et al (2018) Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with NAFLD: a prospective, single arm trial. Hepatol Res 49:64–71. https://doi.org/10.1111/hepr.13236

    Article  CAS  PubMed  Google Scholar 

  • Thomson SC, Vallon V, Blantz RC (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 286:F8–F15

    CAS  PubMed  Google Scholar 

  • Tikkanen I, Narko K, Zeller C et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38:420–428

    CAS  PubMed  Google Scholar 

  • Toulis KA, Willis BH, Marshall T et al (2017) All-cause mortality in patients with diabetes under treatment with dapagliflozin: a population-based, open-cohort study in the health improvement network database. J Clin Endocrinol Metab 102:1719–1725

    PubMed  Google Scholar 

  • United States Food and Drug Administration (2017) FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin. https://www.fda.gov/downloads/Drugs/DrugSafety/UCM558427.pdf. Accessed 12 Nov 2017

  • U.S. Food and Drug Administration (2019) FDA approves Jardiance to reduce cardiovascular death in adults with type 2 diabetes [Internet]. Available from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm531517.htm. Accessed 10 Mar 2019

  • Uthman L, Baartscheer A, Bleijlevens B et al (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61:722–726

    CAS  PubMed  Google Scholar 

  • van Baar MJB, van Ruiten CC, Muskiet MHA et al (2018) SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 41:1543–1556

    PubMed  Google Scholar 

  • Van Bommel EJ, Muskiet MH, Tonneijck L et al (2017a) SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin J Am Soc Nephrol 12:700–710

    PubMed  PubMed Central  Google Scholar 

  • van Bommel EJ, Muskiet MH, Tonneijck L, Kramer MH, Nieuwdorp M, van Raalte DH (2017b) SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin J Am Soc Nephrol 12:700–710

    PubMed  PubMed Central  Google Scholar 

  • Vasilakou D, Karagiannis T, Athanasiadou E et al (2013) Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 159:262–274

    PubMed  Google Scholar 

  • Vick H, Diedrich D, Baumann K (1973) Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am J Phys 224:552–557

    CAS  Google Scholar 

  • Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334

    CAS  PubMed  Google Scholar 

  • White J (2010) Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clin Diabetes 28:5–10

    Google Scholar 

  • Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357

    CAS  PubMed  Google Scholar 

  • Wright EM (2001) Renal Na+-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18

    CAS  PubMed  Google Scholar 

  • Wu JH, Foote C, Blomster J et al (2016) Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 4:411–419

    CAS  PubMed  Google Scholar 

  • Yabe D, Nishikino R, Kaneko M, Iwasaki M, Seino Y (2015) Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: considerations for their appropriate use to avoid serious adverse events. Expert Opin Drug Saf 14:795–800

    CAS  PubMed  Google Scholar 

  • Yale JF, Bakris G, Cariou B et al (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab 16:1016–1027

    CAS  PubMed  Google Scholar 

  • Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ganesh Jevalikar (Medanta The Medicity Hospital) for his valuable inputs for the manuscript.

Funding

No funding was received from any source.

Conflict of Interest

Mohammad Shafi Kuchay, Khalid Jamal Farooqui, Sunil Kumar Mishra and Ambrish Mithal declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shafi Kuchay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuchay, M.S., Farooqui, K.J., Mishra, S.K., Mithal, A. (2020). Glucose Lowering Efficacy and Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_479

Download citation

  • DOI: https://doi.org/10.1007/5584_2020_479

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51088-6

  • Online ISBN: 978-3-030-51089-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics