Skip to main content

Advertisement

Log in

Contrast-Induced Acute Kidney Injury: An Update

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Contrast-induced acute kidney injury (CI-AKI) is defined as an abrupt deterioration in renal function associated with the administration of iodinated contrast media. This type of acute kidney injury is frequently encountered as a complication of percutaneous coronary intervention (PCI) and is associated with adverse short- and long-term outcomes including mainly mortality, cardiovascular morbidity and prolongation of hospitalization. The incidence of CI-AKI after PCI ranges from 2 to 20 % according to baseline kidney function. It may also range according to the clinical setting, being higher after emergency PCI. The primary manifestation is a small decline in kidney function, occurring 1 to 3 days after the procedure. Kidney function usually returns to preexisting levels within 7 days. Incidence of acute renal failure requiring dialysis following PCI is rare (<1 %). The present article aims to review up-to-date published data concerning diagnosis, definition, epidemiology and prognosis of this novel in-hospital epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laville M, Juillard L. Contrast-induced acute kidney injury: how should at-risk patients be identified and managed? Am J Nephrol. 2010;23(4):387–98.

    Google Scholar 

  2. Solomon R. Preventing contrast-induced nephropathy: problems, challenges and future directions. BMC Med. 2009;7:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Blackman DJ, Pinto R, Ross JR, Seidelin PH, Ing D, Jackevicius C, et al. Impact of renal insufficiency on outcome after contemporary percutaneous coronary intervention. Am Heart J. 2006;151(1):146–52.

    Article  PubMed  Google Scholar 

  4. Lindsay J, Apple S, Pinnow EE, Gevorkian N, Gruberg L, Satler LF, et al. Percutaneous coronary intervention-associated nephropathy foreshadows increased risk of late adverse events in patients with normal baseline serum creatinine. Catheter Cardiovasc Interv. 2003;59(3):338–43.

    Article  PubMed  Google Scholar 

  5. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol. 2006;98(6a):5k–13k.

    Article  CAS  PubMed  Google Scholar 

  6. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.

    Article  PubMed  Google Scholar 

  7. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med. 1983;74(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  8. McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103(5):368–75.

    Article  CAS  PubMed  Google Scholar 

  9. Chong E, Poh KK, Liang S, Soon CY, Tan HC. Comparison of risks and clinical predictors of contrast-induced nephropathy in patients undergoing emergency versus nonemergency percutaneous coronary interventions. J Interv Cardiol. 2010;23(5):451–9.

    Article  PubMed  Google Scholar 

  10. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–6.

    Article  PubMed  Google Scholar 

  11. Gruberg L, Mehran R, Dangas G, Mintz GS, Waksman R, Kent KM, et al. Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc Interv. 2001;52(4):409–16.

    Article  CAS  PubMed  Google Scholar 

  12. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    Article  PubMed  Google Scholar 

  13. Bartorelli AL, Marenzi G. Contrast-induced nephropathy. J Interv Cardiol. 2008;21(1):74–85.

    Article  PubMed  Google Scholar 

  14. Barrett BJ, Parfrey PS. Clinical practice. Preventing nephropathy induced by contrast medium. N Engl J Med. 2006;354(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  15. Guitterez NV, Diaz A, Timmis GC, O'Neill WW, Stevens MA, Sandberg KR, et al. Determinants of serum creatinine trajectory in acute contrast nephropathy. J Interv Cardiol. 2002;15(5):349–54.

    Article  PubMed  Google Scholar 

  16. Finn WF. The clinical and renal consequences of contrast-induced nephropathy. Nephrol Dial Transplant. 2006;21(6):i2–10.

    Article  PubMed  Google Scholar 

  17. Solomon R, Dauerman HL. Contrast-induced acute kidney injury. Circulation. 2010;122(23):2451–5.

    Article  PubMed  Google Scholar 

  18. McCullough PA. Radiocontrast-induced acute kidney injury. Nephron Physiol. 2008;109(4):61–72.

    Article  CAS  Google Scholar 

  19. Reinecke H, Fobker M, Wellmann J, Becke B, Fleiter J, Heitmeyer C, et al. A randomized controlled trial comparing hydration therapy to additional hemodialysis or N-acetylcysteine for the prevention of contrast medium-induced nephropathy: the dialysis-versus-diuresis (DVD) trial. Clin Res Cardiol. 2007;96(3):130–9.

    Article  CAS  PubMed  Google Scholar 

  20. Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur Heart J. 2012;33(16):2007–15.

    Article  PubMed  Google Scholar 

  21. Persson PB, Tepel M. Contrast medium-induced nephropathy: the pathophysiology. Kidney Int Suppl. 2006;100:S8–10.

    Article  CAS  PubMed  Google Scholar 

  22. Hardiek K, Katholi RE, Ramkumar V, Deitrick C. Proximal tubule cell response to radiographic contrast media. Am J Physiol Renal Physiol. 2001;280(1):F61–70.

    CAS  PubMed  Google Scholar 

  23. Brezis M, Rosen S, Silva P, Epstein FH. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest. 1984;73(1):182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katzberg RW, Morris TW, Burgener FA, Kamm DE, Fischer HW. Renal renin and hemodynamic responses to selective renal artery catheterization and angiography. Investig Radiol. 1977;12(5):381–8.

    Article  CAS  Google Scholar 

  25. Katzberg RW, Schulman G, Meggs LG, Caldicott WJ, Damiano MM, Hollenberg NK. Mechanism of the renal response to contrast medium in dogs. Decrease in renal function due to hypertonicity. Investig Radiol. 1983;18(1):74–80.

    Article  CAS  Google Scholar 

  26. Talner LB, Davidson AJ. Renal hemodynamic effects of contrast media. Investig Radiol. 1968;3(5):310–7.

    Article  CAS  Google Scholar 

  27. Katholi RE, Taylor GJ, McCann WP, Woods Jr WT, Womack KA, McCoy CD, et al. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology. 1995;195(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  28. Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL, et al. Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int. 1994;45(5):1425–31.

    Article  CAS  PubMed  Google Scholar 

  29. Arend LJ, Bakris GL, Burnett Jr JC, Megerian C, Spielman WS. Role for intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin Med. 1987;110(4):406–11.

    CAS  PubMed  Google Scholar 

  30. Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol. 2002;282(2):R335–42.

    Article  CAS  PubMed  Google Scholar 

  31. Liss P, Carlsson PO, Nygren A, Palm F, Hansell P. Et-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia. Acta Radiol. 2003;44(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, et al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57(4):1675–80.

    Article  CAS  PubMed  Google Scholar 

  33. Bakris GL, Lass N, Gaber AO, Jones JD, Burnett Jr JC. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol. 1990;258(1 Pt 2):F115–20.

    CAS  PubMed  Google Scholar 

  34. Katholi RE, Woods Jr WT, Taylor GJ, Deitrick CL, Womack KA, Katholi CR, et al. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998;32(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  35. Beeri R, Symon Z, Brezis M, Ben-Sasson SA, Baehr PH, Rosen S, et al. Rapid DNA fragmentation from hypoxia along the thick ascending limb of rat kidneys. Kidney Int. 1995;47(6):1806–10.

    Article  CAS  PubMed  Google Scholar 

  36. McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008;51(15):1419–28.

    Article  PubMed  Google Scholar 

  37. Hizoh I, Strater J, Schick CS, Kubler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transplant. 1998;13(4):911–8.

    Article  CAS  PubMed  Google Scholar 

  38. Ueda J, Nygren A, Hansell P, Erikson U. Influence of contrast media on single nephron glomerular filtration rate in rat kidney. A comparison between diatrizoate, iohexol, ioxaglate, and iotrolan. Acta Radiol. 1992;33(6):596–9.

    CAS  PubMed  Google Scholar 

  39. Thomsen HS. Guidelines for contrast media from the European Society of Urogenital Radiology. AJR Am J Roentgenol. 2003;181(6):1463–71.

    Article  PubMed  Google Scholar 

  40. Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Solomon R, Deray G. How to prevent contrast-induced nephropathy and manage risk patients: practical recommendations. Kidney Int Suppl. 2006;100:S51–3.

    Article  PubMed  Google Scholar 

  42. Lakhal K, Ehrmann S, Chaari A, Laissy JP, Regnier B, Wolff M, et al. Acute kidney injury network definition of contrast-induced nephropathy in the critically ill: incidence and outcome. J Crit Care. 2011;26(6):593–9.

    Article  PubMed  Google Scholar 

  43. Slocum NK, Grossman PM, Moscucci M, Smith DE, Aronow HD, Dixon SR, et al. The changing definition of contrast-induced nephropathy and its clinical implications: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am Heart J. 2012;163(5):829–34.

    Article  PubMed  Google Scholar 

  44. Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, Marana I, et al. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44(9):1780–5.

    Article  PubMed  Google Scholar 

  45. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  46. Iakovou I, Dangas G, Mehran R, Lansky AJ, Ashby DT, Fahy M, et al. Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J Invasive Cardiol. 2003;15(1):18–22.

    PubMed  Google Scholar 

  47. Budano C, Levis M, D'Amico M, Usmiani T, Fava A, Sbarra P, et al. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Am Heart J. 2011;161(5):963–71.

    Article  PubMed  Google Scholar 

  48. Caruso M, Balasus F, Incalcaterra E, Ruggieri A, Evola S, Fattouch K, et al. Contrast-induced nephropathy after percutaneous coronary intervention in simple lesions: risk factors and incidence are affected by the definition utilized. Intern Med. 2011;50(9):983–9.

    Article  PubMed  Google Scholar 

  49. Chousterman BG, Bouadma L, Moutereau S, Loric S, Alvarez-Gonzalez A, Mekontso-Dessap A, et al. Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care. 2013;28(5):701–9.

    Article  CAS  PubMed  Google Scholar 

  50. Sinert R, Brandler E, Subramanian RA, Miller AC. Does the current definition of contrast-induced acute kidney injury reflect a true clinical entity? Acad Emerg Med. 2012;19(11):1261–7.

    Article  PubMed  Google Scholar 

  51. Caixeta A, Mehran R. Evidence-based management of patients undergoing PCI: contrast-induced acute kidney injury. Catheter Cardiovasc Interv. 2010;75 Suppl 1:S15–20.

    Article  PubMed  Google Scholar 

  52. Chiou WL, Hsu FH. Pharmacokinetics of creatinine in man and its implications in the monitoring of renal function and in dosage regimen modifications in patients with renal insufficiency. J Clin Pharmacol. 1975;15(5-6):427–34.

    Article  CAS  PubMed  Google Scholar 

  53. Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27(6):928–37.

    Article  CAS  PubMed  Google Scholar 

  54. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20(3):672–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin J, Fernandez H, Shashaty MG, Negoianu D, Testani JM, Berns JS et al. False-Positive Rate of AKI Using Consensus Creatinine-Based Criteria. Clin J Am Soc Nephrol. 2015

  56. Briguori C, Quintavalle C, Donnarumma E, Condorelli G. Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int. 2014;2014:568738.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Toprak O. Risk markers for contrast-induced nephropathy. Am J Med Sci. 2007;334(4):283–90.

    Article  PubMed  Google Scholar 

  58. Stacul F, van der Molen AJ, Reimer P, Webb JA, Thomsen HS, Morcos SK, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011;21(12):2527–41.

    Article  PubMed  Google Scholar 

  59. Marenzi G, Assanelli E, Campodonico J, Lauri G, Marana I, De Metrio M, et al. Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med. 2009;150(3):170–7.

    Article  PubMed  Google Scholar 

  60. Kane GC, Doyle BJ, Lerman A, Barsness GW, Best PJ, Rihal CS. Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J Am Coll Cardiol. 2008;51(1):89–90.

    Article  PubMed  Google Scholar 

  61. Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ. Canadian association of radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J. 2014;65(2):96–105.

    Article  PubMed  Google Scholar 

  62. Keaney JJ, Hannon CM, Murray PT. Contrast-induced acute kidney injury: how much contrast is safe? Nephrol Dial Transplant. 2013;28(6):1376–83.

    Article  PubMed  Google Scholar 

  63. Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6 Pt 1):649–52.

    Article  CAS  PubMed  Google Scholar 

  64. Freeman RV, O'Donnell M, Share D, Meengs WL, Kline-Rogers E, Clark VL, et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am J Cardiol. 2002;90(10):1068–73.

    Article  PubMed  Google Scholar 

  65. Mager A, Vaknin Assa H, Lev EI, Bental T, Assali A, Kornowski R. The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction. Catheter Cardiovasc Interv. 2011;78(2):198–201.

    Article  PubMed  Google Scholar 

  66. Gurm HS, Dixon SR, Smith DE, Share D, Lalonde T, Greenbaum A, et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58(9):907–14.

    Article  PubMed  Google Scholar 

  67. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.

    Article  PubMed  Google Scholar 

  68. Park HS, Kim CJ, Yi JE, Hwang BH, Kim TH, Koh YS, et al. Contrast volume/Raw eGFR ratio for predicting contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention for myocardial infarction. Cardiorenal Med. 2015;5(1):61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yoon HJ, Hur SH. Determination of safe contrast media dosage to estimated glomerular filtration rate ratios to avoid contrast-induced nephropathy after elective percutaneous coronary intervention. Korean Circ J. 2011;41(5):265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nyman U, Bjork J, Aspelin P, Marenzi G. Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008;49(6):658–67.

    Article  CAS  PubMed  Google Scholar 

  71. Azzalini L, Spagnoli V, Ly HQ. Contrast-Induced Nephropathy: From Pathophysiology to Preventive Strategies. Can J Cardiol. 2015

  72. Tepel M, Aspelin P, Lameire N. Contrast-induced nephropathy: a clinical and evidence-based approach. Circulation. 2006;113(14):1799–806.

    Article  PubMed  Google Scholar 

  73. Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Contrast-induced nephropathy: an "All or none" phenomenon? Angiology. 2015;66(6):508–13.

    Article  PubMed  Google Scholar 

  74. Ohno Y, Maekawa Y, Miyata H, Inoue S, Ishikawa S, Sueyoshi K, et al. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol. 2013;62(14):1260–6.

    Article  PubMed  Google Scholar 

  75. Wi J, Ko YG, Kim JS, Kim BK, Choi D, Ha JW, et al. Impact of contrast-induced acute kidney injury with transient or persistent renal dysfunction on long-term outcomes of patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart. 2011;97(21):1753–7.

    Article  PubMed  Google Scholar 

  76. Mitchell AM, Kline JA, Jones AE, Tumlin JA. Major Adverse Events One Year After Acute Kidney Injury After Contrast-Enhanced Computed Tomography. Ann Emerg Med. 2015.

  77. James MT, Samuel SM, Manning MA, Tonelli M, Ghali WA, Faris P, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6(1):37–43.

    Article  PubMed  Google Scholar 

  78. Dangas G, Iakovou I, Nikolsky E, Aymong ED, Mintz GS, Kipshidze NN, et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol. 2005;95(1):13–9.

    Article  PubMed  Google Scholar 

  79. Kini AS, Sarkar K, Rafael OC, Jakkula M, Kaplish D, Lee P, et al. Serum creatinine ratio: a novel predictor of mortality after percutaneous coronary intervention in patients with normal and abnormal renal function. Catheter Cardiovasc Interv. 2009;74(1):49–55.

    Article  PubMed  Google Scholar 

  80. Weisbord SD, Chen H, Stone RA, Kip KE, Fine MJ, Saul MI, et al. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol. 2006;17(10):2871–7.

    Article  CAS  PubMed  Google Scholar 

  81. Abe M, Morimoto T, Akao M, Furukawa Y, Nakagawa Y, Shizuta S, et al. Relation of contrast-induced nephropathy to long-term mortality after percutaneous coronary intervention. Am J Cardiol. 2014;114(3):362–8.

    Article  PubMed  Google Scholar 

  82. Chen SL, Zhang J, Yei F, Zhu Z, Liu Z, Lin S, et al. Clinical outcomes of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention: a prospective, multicenter, randomized study to analyze the effect of hydration and acetylcysteine. Int J Cardiol. 2008;126(3):407–13.

    Article  PubMed  Google Scholar 

  83. Wickenbrock I, Perings C, Maagh P, Quack I, van Bracht M, Prull MW, et al. Contrast medium induced nephropathy in patients undergoing percutaneous coronary intervention for acute coronary syndrome: differences in STEMI and NSTEMI. Clin Res Cardiol. 2009;98(12):765–72.

    Article  PubMed  Google Scholar 

  84. Weisbord SD, Hartwig KC, Sonel AF, Fine MJ, Palevsky P. The incidence of clinically significant contrast-induced nephropathy following non-emergent coronary angiography. Catheter Cardiovasc Interv. 2008;71(7):879–85.

    Article  PubMed  Google Scholar 

  85. Gruberg L, Mintz GS, Mehran R, Gangas G, Lansky AJ, Kent KM, et al. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol. 2000;36(5):1542–8.

    Article  CAS  PubMed  Google Scholar 

  86. Nemoto N, Iwasaki M, Nakanishi M, Araki T, Utsunomiya M, Hori M, et al. Impact of continuous deterioration of kidney function 6 to 8 months after percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2014;113(10):1647–51.

    Article  PubMed  Google Scholar 

  87. Abaci O, Harmankaya O, Kocas B, Kocas C, Bostan C, Coskun U, et al. Long-term follow-Up of patients at high risk for nephropathy after contrast exposure. Angiology. 2015;66(6):514–8.

    Article  CAS  PubMed  Google Scholar 

  88. Holscher B, Heitmeyer C, Fobker M, Breithardt G, Schaefer RM, Reinecke H. Predictors for contrast media-induced nephropathy and long-term survival: prospectively assessed data from the randomized controlled Dialysis-Versus-Diuresis (DVD) trial. Can J Cardiol. 2008;24(11):845–50.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bartholomew BA, Harjai KJ, Dukkipati S, Boura JA, Yerkey MW, Glazier S, et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol. 2004;93(12):1515–9.

    Article  PubMed  Google Scholar 

  90. Tziakas D, Chalikias G, Stakos D, Apostolakis S, Adina T, Kikas P, et al. Development of an easily applicable risk score model for contrast-induced nephropathy prediction after percutaneous coronary intervention: a novel approach tailored to current practice. Int J Cardiol. 2013;163(1):46–55.

    Article  PubMed  Google Scholar 

  91. Tziakas D, Chalikias G, Stakos D, Altun A, Sivri N, Yetkin E, et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am J Cardiol. 2014;113(9):1487–93.

    Article  PubMed  Google Scholar 

  92. Silver SA, Shah PM, Chertow GM, Harel S, Wald R, Harel Z. Risk prediction models for contrast induced nephropathy: systematic review. BMJ. 2015;351:h4395.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tziakas D, Chalikias G, Kareli D, Tsigalou C, Risgits A, Kikas P, et al. Spot urine albumin to creatinine ratio outperforms novel acute kidney injury biomarkers in patients with acute myocardial infarction. Int J Cardiol. 2015;197:48–55.

    Article  PubMed  Google Scholar 

  94. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–24.

    Article  CAS  PubMed  Google Scholar 

  95. Shlipak MG, Matsushita K, Arnlov J, Inker LA, Katz R, Polkinghorne KR, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, et al. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis. 2013;62(6):1058–67.

    Article  CAS  PubMed  Google Scholar 

  97. Lin X, Yuan J, Zhao Y, Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Nephrol. 2015;28(1):7–16.

    Article  CAS  Google Scholar 

  98. Molitoris BA. Urinary biomarkers: alone Are they enough? J Am Soc Nephrol. 2015;26(7):1485–8.

    Article  PubMed  Google Scholar 

  99. Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast media safety committee, european society of urogenital radiology (ESUR). Eur Radiol. 1999;9(8):1602–13.

    Article  CAS  PubMed  Google Scholar 

  100. ESUR Guidelines on Contrast Media, version 8.1. European Society of Urogenital Radiology. http://www.esur.org/guidelines/. Accessed September 2015.

  101. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney inter. 2012;2(1):1.

    Article  Google Scholar 

  102. Jorres A, John S, Lewington A, ter Wee PM, Vanholder R, Van Biesen W, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: part 2: renal replacement therapy. Nephrol Dial Transplant. 2013;28(12):2940–5.

    Article  PubMed  Google Scholar 

  103. Consensus Guidelines for the Prevention of Contrast Induced Nephropathy. Canadian Association of Radiologists. http://www.car.ca/en/standards-guidelines/standards.aspx. Accessed October 2015.

  104. Gupta R, Gurm HS, Bhatt DL, Chew DP, Ellis SG. Renal failure after percutaneous coronary intervention is associated with high mortality. Catheter Cardiovasc Interv. 2005;64(4):442–8.

    Article  PubMed  Google Scholar 

  105. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Harjai KJ, Raizada A, Shenoy C, Sattur S, Orshaw P, Yaeger K, et al. A comparison of contemporary definitions of contrast nephropathy in patients undergoing percutaneous coronary intervention and a proposal for a novel nephropathy grading system. Am J Cardiol. 2008;101(6):812–9.

    Article  PubMed  Google Scholar 

  108. Watabe H, Sato A, Hoshi T, Takeyasu N, Abe D, Akiyama D, et al. Association of contrast-induced acute kidney injury with long-term cardiovascular events in acute coronary syndrome patients with chronic kidney disease undergoing emergent percutaneous coronary intervention. Int J Cardiol. 2014;174(1):57–63.

    Article  PubMed  Google Scholar 

  109. Jabara R, Gadesam RR, Pendyala LK, Knopf WD, Chronos N, Chen JP, et al. Impact of the definition utilized on the rate of contrast-induced nephropathy in percutaneous coronary intervention. Am J Cardiol. 2009;103(12):1657–62.

    Article  PubMed  Google Scholar 

  110. Goldenberg I, Chonchol M, Guetta V. Reversible acute kidney injury following contrast exposure and the risk of long-term mortality. Am J Nephrol. 2009;29(2):136–44.

    Article  PubMed  Google Scholar 

  111. Roy P, Raya V, Okabe T, Pinto Slottow TL, Steinberg DH, Smith K, et al. Incidence, predictors, and outcomes of post-percutaneous coronary intervention nephropathy in patients with diabetes mellitus and normal baseline serum creatinine levels. Am J Cardiol. 2008;101(11):1544–9.

    Article  CAS  PubMed  Google Scholar 

  112. Cho JY, Jeong MH, Hwan Park S, Kim IS, Park KH, Sim DS, et al. Effect of contrast-induced nephropathy on cardiac outcomes after use of nonionic isosmolar contrast media during coronary procedure. J Cardiol. 2010;56(3):300–6.

    Article  PubMed  Google Scholar 

  113. Kume K, Yasuoka Y, Adachi H, Noda Y, Hattori S, Araki R, et al. Impact of contrast-induced acute kidney injury on outcomes in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cardiovasc Revasc Med. 2013;14(5):253–7.

    Article  PubMed  Google Scholar 

  114. Narula A, Mehran R, Weisz G, Dangas GD, Yu J, Genereux P, et al. Contrast-induced acute kidney injury after primary percutaneous coronary intervention: results from the HORIZONS-AMI substudy. Eur Heart J. 2014;35(23):1533–40.

    Article  CAS  PubMed  Google Scholar 

  115. Patti G, Nusca A, Chello M, Pasceri V, D'Ambrosio A, Vetrovec GW, et al. Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention. Am J Cardiol. 2008;101(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  116. Kim JH, Yang JH, Choi SH, Song YB, Hahn JY, Choi JH, et al. Predictors of outcomes of contrast-induced acute kidney injury after percutaneous coronary intervention in patients with chronic kidney disease. Am J Cardiol. 2014;114(12):1830–5.

    Article  PubMed  Google Scholar 

  117. Crimi G, Leonardi S, Costa F, Ariotti S, Tebaldi M, Biscaglia S, et al. Incidence, prognostic impact, and optimal definition of contrast-induced acute kidney injury in consecutive patients with stable or unstable coronary artery disease undergoing percutaneous coronary intervention. insights from the all-comer PRODIGY trial. Catheter Cardiovasc Interv. 2015;86(1):E19–27.

    Article  PubMed  Google Scholar 

  118. Senoo T, Motohiro M, Kamihata H, Yamamoto S, Isono T, Manabe K, et al. Contrast-induced nephropathy in patients undergoing emergency percutaneous coronary intervention for acute coronary syndrome. Am J Cardiol. 2010;105(5):624–8.

    Article  PubMed  Google Scholar 

  119. Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73(9):1008–16.

    Article  CAS  PubMed  Google Scholar 

  120. McCullough PA, Tumlin J, Szerlip H, Krishnaswami V, Jyothinagaram S, Rausch JF et al. Cardiorenal Syndromes: Advances in Determining Diagnosis, Prognosis and Therapy. J Cardiovasc Dis Diagn. 2015;3(221)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Tziakas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalikias, G., Drosos, I. & Tziakas, D.N. Contrast-Induced Acute Kidney Injury: An Update. Cardiovasc Drugs Ther 30, 215–228 (2016). https://doi.org/10.1007/s10557-015-6635-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6635-0

Keywords

Navigation