Skip to main content
Log in

Warfarin Metabolites in Patients Following Cardiac Valve Implantation: A Contribution of Clinical and Genetic Factors

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Warfarin, a racemic mixture of S- and R-enantiomers, is the cornerstone of therapy in patients following cardiac valve replacement. S-warfarin is metabolized to 7-S-hydroxywarfarin by the cytochrome P450 isoform 2C9 encoded by CYP2C9 gene. R-warfarin is metabolized by multiple cytochromes P450. We sought to assess the impact of clinical and genetic factors on circulating warfarin metabolites following valve implantation.

Material and Methods

Venous blood was collected from 120 patients after 3 months since elective mitral and/or aortic valve replacement. Plasma S-warfarin, R-warfarin, S-7-hydroxywarfarin, and R-7-hydroxywarfarin were determined using high-performance liquid chromatography. The S-7-hydroxywarfarin/S-warfarin and S-warfarin/R-warfarin (S/R) ratios, along with warfarin sensitivity index (WSI), defined as INR/S-warfarin ratio, were calculated. Vitamin K epoxide reductase complex subunit 1 (VKORC1) c.-1639A, CYP2C9*3 and CYP2C9*2 alleles were determined using real-time polymerase chain reaction.

Results

The S-warfarin was higher in former smokers (p = 0.047) and the VKORC1 c.-1639A allele carriers (p < 0.0001). The S-7-hydroxywarfarin was lower in carriers of the VKORC1 c.-1639A allele (p = 0.0005) and CYP2C9*3 (p = 0.047). The S-7-hydroxywarfarin/S-warfarin ratio was lower in the carriers of CYP2C9*3 (p = 0.008), but not in those with VKORC1 –c.1639A allele. The S/R ratio was higher in patients with hypertension (p = 0.01). The independent predictors of elevated S/R ratio defined as the upper quartile were diabetes (p = 0.045), CYP2C9*3 (p < 0.0001) and CYP2C9*2 (p = 0.0002). The independent predictors of elevated WSI were current smoking (p = 0.049), implantation of mechanical valve (p = 0.006) and VKORC1c.-1639A allele (p = 0.007).

Conclusion

We conclude that not only genetic, but also several clinical factors affect warfarin metabolites in patients following cardiac valve implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

BMI:

Body mass index

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CI:

Confidence interval

CKD-EPI:

Chronic kidney disease epidemiology collaboration

CV:

Coefficients of variability

CYP2C9 :

Cytochrome P450 isoform 2C9 gene

eGFR:

Estimated glomerular filtration rate

HPLC-UV:

High performance liquid chromatography with ultraviolet detection

INR:

International normalized ratio

SNP:

Single nucleotide polymorphism

S/R ratio:

S-warfarin/R-warfarin ratio

TTR:

Time in therapeutic range

Vd:

Volume of distribution

VKORC1 :

Vitamin K epoxide reductase complex subunit 1 gene

WSI:

Warfarin sensitivity index

References

  1. Vahanian A, Alfieri O, Andreotti F, et al. Joint task force on the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  PubMed  Google Scholar 

  2. O’Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther. 1974;16:348–54.

    PubMed  Google Scholar 

  3. Golan DE, Tashjian Jr AH, Armstrong EJ, Armstrong AW. Principles of pharmacology: the pathophysiologic basis of drug therapy, vol. 41. 3rd ed. Philadelphia: Lippincott Williams&Wilkins; 2012.

    Google Scholar 

  4. Takahashi H, Echizen H. Pharmacogenetics of warfarin. Elimination and its clinical implications. Clin Pharmacokinet. 2001;40:587–603.

    Article  CAS  PubMed  Google Scholar 

  5. Chan E, McLachlan AJ, Pegg M, MacKay AD, Cole RB, Rowland M. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol. 1994;37:563–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5:193–202.

    Article  CAS  PubMed  Google Scholar 

  7. Miura M, Okuyama S, Kato S, et al. Simultaneous determination of warfarin and 7-hydroxywarfarin enantiomers by high-performance liquid chromatography with ultraviolet detection. Ther Drug Monit. 2011;33:108–14.

    Article  CAS  PubMed  Google Scholar 

  8. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of cytochrome P450 CYP2C9 and 2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72:702–10.

    Article  CAS  PubMed  Google Scholar 

  9. Shikata E, Ieiri I, Ishiguro S, et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamylcarboxylase) genes with warfarin sensitivity. Blood. 2004;103:2630–5.

    Article  CAS  PubMed  Google Scholar 

  10. Franco V, Polanczyk CA, Clausell N, Rohde LE. Role of dietary vitamin K intake in chronic oral anticoagulation: prospective evidence from observational and randomized protocols. Am J Med. 2004;116:651–6.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi H, Wilkinson GR, Nutescu EA, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese. Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16:101–10.

    Article  CAS  PubMed  Google Scholar 

  12. Meijer K, Kim YK, Schulman S. Decreasing warfarin sensitivity during the first three months after heart valve surgery: implications for dosing. Thromb Res. 2010;125:224–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427:537–41.

    Article  CAS  PubMed  Google Scholar 

  14. Geisen C, Watzka M, Sittinger K, et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost. 2005;94:773–9.

    PubMed  Google Scholar 

  15. D’Andrea G, D’Ambrosio RL, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105:645–9.

    Article  PubMed  Google Scholar 

  16. Stepien E, Branicka A, Ciesla-Dul M, Undas A. A vitamin K epoxide reductase-oxidase complex gene polymorphism (−1639G>A) and interindividual variability in the dose-effect of vitamin K antagonists. J Appl Genet. 2009;50:399–403.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Shennan M, Reynolds KK, et al. Estimation of warfarin maintenance dose based on VKORC1 (−1639G-A) and CYP2C9 genotypes. Chemistry. 2007;53:1199–205.

    CAS  Google Scholar 

  18. Rettie AE, Tai G. The pharmocogenomics of warfarin: closing in on personalized medicine. Mol Interv. 2006;6:223–7.

    Article  CAS  PubMed  Google Scholar 

  19. Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rosendaal FR, Cannegieter SC, Van deer Meer FJ, Briët E. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost. 1993;69:236–9.

    CAS  PubMed  Google Scholar 

  21. Linder MW, Homme MB, Reynolds KK, et al. Interactive modeling for ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin Chem. 2009;55:1861–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Liu Y, Jeong H, Takahashi H, et al. Decreased warfarin clearance associated with the CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther. 2012;91:660–5.

    Article  CAS  PubMed  Google Scholar 

  23. Lubetsky A, Dekel-Stern E, Chetrit A, Lubin F, Halkin H. Vitamin K intake and sensitivity to warfarin in patients consuming regular diets. Thromb Haemost. 1999;81:396–9.

    CAS  PubMed  Google Scholar 

  24. Giansante C, Fiotti N, Altamura N, et al. Oral anticoagulation and VKORC1 polymorphism in patients with a mechanical heart prosthesis: a 6-year follow-up. J Thromb Thrombolysis. 2012;34:506–12.

    Article  CAS  PubMed  Google Scholar 

  25. Rahman M, BinEsmael TM, Payne N, Butchart EG. Increased sensitivity to warfarin after heart valve replacement. Ann Pharmacother. 2006;40:397–401.

    Article  CAS  PubMed  Google Scholar 

  26. Goldsmith I, Turpie AG, Lip GY. Valvular heart disease and prosthetic heart valves. BMJ. 2002;325:1228–31.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hamberg AK, Dahl ML, Barban M, et al. A PK–PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81:529–38.

    Article  CAS  PubMed  Google Scholar 

  28. Lee VW, You JH, Lee KK, Chau TS, Waye MM, Cheng G. Factors affecting the maintenance stable warfarin dosage in Hong Kong Chinese patients. J Thromb Thrombolysis. 2005;20:33–8.

    Article  CAS  PubMed  Google Scholar 

  29. Holstein A, Plaschke A, Ptak M, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol. 2005;60:103–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hallberg P, Karlsson J, Kurland L, et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs. Atenolol (SILVHIA) trial. J Hypertens. 2002;20:2089–93.

    Article  CAS  PubMed  Google Scholar 

  31. Kornej J, Potpara T, Lip GY. Anticoagulation management in nonvalvular atrial fibrillation: current and future directions. Pol Arch Med Wewn. 2013;123:623–34.

    PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Conflict of Interest

The authors stated that there are no conflicts of interest regarding the publication of this article.

Research Funding

This study was supported by the grant from National Centre of Science (N N403152340, to A.U.).

Research Involving Human Participants

The study was approved by the University Bioethical Committee according to Declaration of Helsinki.

Informed Consent

All patients gave written informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anetta Undas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryk, A., Wypasek, E., Awsiuk, M. et al. Warfarin Metabolites in Patients Following Cardiac Valve Implantation: A Contribution of Clinical and Genetic Factors. Cardiovasc Drugs Ther 29, 257–264 (2015). https://doi.org/10.1007/s10557-015-6591-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6591-8

Keywords

Navigation