Skip to main content

Advertisement

Log in

Lipid-lowering Therapies, Glucose Control and Incident Diabetes: Evidence, Mechanisms and Clinical Implications

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Lipid-lowering therapies constitute an essential part in the treatment and prevention of cardiovascular diseases and are consistently shown to reduce adverse cardiovascular outcomes in wide-scale populations. Recently, there is increased awareness of the possibility that lipid-lowering drugs may affect glucose control and insulin resistance. This phenomenon is reported in all classes of lipid-modifying agents, with differential effects of distinct drugs. Since the prevalence of metabolic syndrome and diabetes is rising, and lipid-modifying therapies are widely used to reduce the cardiovascular burden in these populations, it is of importance to examine the relationship between lipid-lowering drugs, glycemic control and incident diabetes. In the current review we discuss the evidence, ranging from experimental studies to randomized controlled clinical trials and meta-analyses, of how lipid-modifying therapies affect glycemic control and insulin sensitivity. Cumulative data suggest that both statins and niacin are associated with increased risk of impaired glucose control and development of new-onset diabetes, as opposed to bile-acid sequestrants which display concomitant moderate lipid and glucose lowering effects, and fibrates (particularly the pan-PPAR agonist bezafibrate) which may produce beneficial effects on glucose metabolism and insulin sensitivity. Ezetimibe is implied to ameliorate metabolic markers such as hepatic steatosis and insulin resistance, with yet little support from clinical trials, while fish oils which in experimental studies produce favorable effects on insulin sensitivity, although studied extensively, continue to show inconclusive effects on glucose homeostasis in patients with diabetes. Suggested mechanisms of how lipid-modifying agents affect glucose control and their clinical implications in this context, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAS:

bile acids sequestrants

CETP:

Cholesteryl ester transfer protein

CI:

confidence interval

FPG:

fasting plasma glucose

FXR:

farnesoid X receptor

GLP-1:

glucagon-like peptide-1

HDL-C:

high-density lipoprotein cholesterol

HgbA1c:

glycosylated hemoglobin

LDL-C:

low-density lipoprotein cholesterol

n-3 PUFA:

omega-3 poly-unsaturated fatty acids

PPAR:

peroxisome proliferator-activated receptor

RR:

relative risk

TGR5:

G protein coupled bile acid receptor 1 (TGR5/GPBAR1)

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–e220.

    PubMed  Google Scholar 

  2. Mills E, Wu P, Chong G, et al. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170 255 patients from 76 randomized trials. Quarterly Journal of Medicine. 2011;104:109–24.

    CAS  Google Scholar 

  3. Ridker PM, Danielson E, Fonseca FAH, et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373:1175–82.

    CAS  PubMed  Google Scholar 

  4. Cholesterol Treatment Trialists Collaboration, Baigent C, Blackwell L. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet. 2010;376:1670–81.

    PubMed  Google Scholar 

  5. Kearney PM, Blackwell L, Collins R. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    CAS  PubMed  Google Scholar 

  6. Freeman DJ, Norrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the west of Scotland coronary prevention study. Circulation. 2001;103:357–62.

    CAS  PubMed  Google Scholar 

  7. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. The New England Journal of Medicine. 2008;359:2195–207.

    CAS  PubMed  Google Scholar 

  8. Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomized statin trials. Lancet. 2010;375:735–42.

    CAS  PubMed  Google Scholar 

  10. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    CAS  PubMed  Google Scholar 

  11. Ishikawa M, Namiki A, Kubota T, et al. Effect of pravastatin and atorvastatin on glucose metabolism in nondiabetic patients with hypercholesterolemia. Internal Medicine. 2006;45:51–5.

    PubMed  Google Scholar 

  12. Koh K, Quon M, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. Journal of the American College of Cardiology. 2010;55:1209–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. British Journal of Clinical Pharmacology. 2013;75(4):1118–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Navarese EP, Buffon A, Andreotti F, et al. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. American Journal of Cardiology. 2013;111(8):1123–30.

    CAS  PubMed  Google Scholar 

  15. Baker W, Talati R, White C, Coleman C. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Research and Clinical Practice. 2010;87:98–107.

    CAS  PubMed  Google Scholar 

  16. Yamakawa T, Takano T, Tanaka S, Kadonosono K, Terauchi Y. Influence of pitavastatin on glucose tolerance in patients with type 2 diabetes mellitus. Journal of Atherosclerosis and Thrombosis. 2008;15(5):269–75.

    CAS  PubMed  Google Scholar 

  17. Teramoto T. Pitavastatin: clinical effects from the LIVES Study. Atherosclerosis Supplements. 2011;12(3):285–8.

    CAS  PubMed  Google Scholar 

  18. Yamazaki T, Kishimoto J, Ito C, et al. Japan prevention trial of diabetes by pitavastatin in patients with impaired glucose tolerance (the J-PREDICT study): rationale, study design, and clinical characteristics of 1269 patients. Diabetology International. 2011;2(3):134–40.

    Google Scholar 

  19. Simsek S, Schalkwijk CG, Wolffenbuttel BHR. Effects of rosuvastatin and atorvastatin on glycaemic control in type 2 diabetes—the CORALL study. Diabetic Medicine. 2012;29(5):628–31.

    CAS  PubMed  Google Scholar 

  20. Sukhija R, Prayaga S, Marashdeh M, et al. Effect of statins on fasting plasma glucose in diabetic and nondiabetic patients. Journal of Investigative Medicine. 2009;57:495–9.

    CAS  PubMed  Google Scholar 

  21. Culver A, Ockene I, Balasubramanian R. Statin use and risk of diabetes mellitus in postmenopausal women in the women’s health initiative. Archives of Internal Medicine. 2012;172:144–52.

    PubMed  Google Scholar 

  22. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380(9841):565–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Waters DD, Ho JE, Demicco DA, et al. Predictors of new-onset diabetes in patients treated with atorvastatin results from 3 large randomized clinical trials. Journal of the American College of Cardiology. 2011;57:1535–45.

    CAS  PubMed  Google Scholar 

  24. Waters DD, Ho JE, Boekholdt S, et al. Cardiovascular event reduction versus New-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. Journal of the American College of Cardiology. 2013;61(2):148–52.

    CAS  PubMed  Google Scholar 

  25. Koh K, Sakuma I, Quon M. Differential metabolic effects of distinct statins. Atherosclerosis. 2011;215:1–8.

    CAS  PubMed  Google Scholar 

  26. Wong V, Stavar L, Szeto L, et al. Atorvastatin induces insulin sensitization in Zucker lean and fatty rats. Atherosclerosis. 2006;184:348–55.

    CAS  PubMed  Google Scholar 

  27. Takagi T, Matsuda M, Abe M, et al. Effect of pravastatin on the development of diabetes and adiponectin production. Atherosclerosis. 2008;196:114–21.

    CAS  PubMed  Google Scholar 

  28. Yada T, Nakata M, Shiraishi T, et al. Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2_ signaling and insulin secretion due to blockade of L-type Ca2_channels in rat islet beta-cells. British Journal of Pharmacology. 1999;126:1205–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ishikawa M, Okajima F, Inoue N, et al. Distinct effects of pravastatin, atorvas- tatin, and simvastatin on insulin secretion from a beta-cell line, MIN6 cells. Journal of Atherosclerosis and Thrombosis. 2006;13:329–35.

    CAS  PubMed  Google Scholar 

  30. Mallinson JE, Constantin-Teodosiu D, Sidaway J, Westwood FR, Greenhaff PL. Blunted Akt/FOXO signaling and activation of genes controlling atrophy and fuel use in statin myopathy. Journal of Physiology. 2009;587:219–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Mabuchi H, Higashikata T, Kawashiri M, et al. Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients. Journal of Atherosclerosis and Thrombosis. 2005;12:111–19.

    CAS  PubMed  Google Scholar 

  32. Nakata M, Nagasaka S, Kusaka I, et al. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control. Diabetologia. 2006;49:1881–92.

    CAS  PubMed  Google Scholar 

  33. Xia F, Xie L, Mihic A, et al. Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage gated calcium channel function in pancreatic beta-cells. Endocrinology. 2008;149:5136–45.

    CAS  PubMed  Google Scholar 

  34. Sampson UK, Linton MF, Fazio S. Are statins diabetogenic? Current Opinion in Cardiology. 2011;26(4):342–7.

    PubMed Central  PubMed  Google Scholar 

  35. FDA Drug Safety Communication: Important Safety Label Changes to Cholesterol-Lowering Statin Drugs. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm293101.htm. Accessed November 21, 2012.

  36. Out C, Groen AK, Brufau G. Bile acid sequestrants: more than simple resins. Current Opinion in Lipidology. 2012;23:43–55.

    CAS  PubMed  Google Scholar 

  37. Rifkind BM. Lipid research clinics coronary primary prevention trial: results and implications. American Journal of Cardiology. 1984;54(5):30C–4C.

    CAS  PubMed  Google Scholar 

  38. Brensike JF, Levy RI, Kelsey SF. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type I. Coronary Intervention Study. Circulation. 1984;69(313).

  39. Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. Southern Medical Journal. 2006;99(3):257–73.

    PubMed  Google Scholar 

  40. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Annals of Internal Medicine. 1994;121:416–22.

    CAS  PubMed  Google Scholar 

  41. Yamakawa T, Takano T, Utsunomiya H, Kadonosono K, Okamura A. Effect of colestimide therapy for glycemic control in type 2 diabetes mellitus with hypercholesterolemia. Endocrine Journal. 2007;54:53–8.

    CAS  PubMed  Google Scholar 

  42. Kondo K, Kadowaki T. Colestilan mono-therapy significantly improves glycemic control and LDL cholesterol levels in patients with type 2 diabetes: a randomized double-blind, placebo-controlled study. Diabetes, Obesity & Metabolism. 2010;12:246–51.

    CAS  Google Scholar 

  43. Welchol (colesevelam hydrochloride) drug safety labeling changes. January 2008. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021176s017lbl.pdf. Accessed November 21, 2012.

  44. Zema MJ. Colesevelam hydrochloride: evidence for its use in the treatment of hypercholesterolemia and type 2 diabetes mellitus with insights into mechanism of action. Core Evidence. 2012;7:61–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clinical Therapeutics. 2007;29:74–83.

    CAS  PubMed  Google Scholar 

  46. Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Archives of Internal Medicine. 2008;168:1975–83.

    CAS  PubMed  Google Scholar 

  47. Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31:1479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Archives of Internal Medicine. 2008;168:1531–40.

    CAS  PubMed  Google Scholar 

  49. Handelsman Y, Goldberg RB, Garvey WT, et al. Colesevelam hydrochloride to treat hypercholesterolemia and improve glycemia in prediabetes: a randomized, prospective study. Endocrine Practice. 2010;16:617–28.

    PubMed  Google Scholar 

  50. Rosenstock J, Hernandez-Triana E, Handelsman Y, Misir S, Jones MR. Clinical effects of colesevelam in Hispanic subjects with primary hyperlipidemia and prediabetes. Postgraduate Medicine. 2012;124:14–20.

    PubMed  Google Scholar 

  51. Vega GL, Dunn FL, Grundy SM. Effect of colesevelam hydrochloride on glycemia and insulin sensitivity in men with the metabolic syndrome. American Journal of Cardiology. 2011;108:1129–35.

    CAS  PubMed  Google Scholar 

  52. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the american diabetes association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care. 2012;35:1364–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Rodbard HW, Jellinger PS, Davidson JA, et al. Statement by an american association of clinical endocrinologists/american college of endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocrine Practice. 2009;15:540–59.

    PubMed  Google Scholar 

  54. Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53:890–98.

    CAS  PubMed  Google Scholar 

  55. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation. 2006;116:1102–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism. 2009;10:167–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 2007;56:239–47.

    CAS  PubMed  Google Scholar 

  58. Schwartz SL, Lai Y, Xu J, et al. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: A pilot study. Metabolic Syndrome and Related Disorders. 2010;8:179–88.

    CAS  PubMed  Google Scholar 

  59. Prawitt J, Staels B. Bile acids sequestrants: glucose-lowering mechanisms. Metabolic Syndrome and Related Disorders. 2010;8:S3–8.

    CAS  PubMed  Google Scholar 

  60. Suzuki T, Oba K, Igari Y, et al. Colestimide lowers plasma glucose levels and increases plasma glucagon-like PEPTIDE-1 levels in patients with type 2 diabetes mellitus complicated by hypercholesterolemia. Journal of Nippon Medical School. 2007;74:338–43.

    CAS  PubMed  Google Scholar 

  61. Beysen C, Murphy EJ, Deines K, et al. Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia. 2012;55:432–42.

    CAS  PubMed  Google Scholar 

  62. Chen L, McNulty J, Anderson D, et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. Journal of Pharmacology and Experimental Therapeutics. 2010;334:164–70.

    CAS  PubMed  Google Scholar 

  63. Shang Q, Saumoy M, Holst JJ, Salen G, Xu G. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. American Journal of Physiology Gastrointestinal and Liver Physiology. 2010;298(3):G419–24.

    CAS  PubMed  Google Scholar 

  64. Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010;210(2):353–61.

    CAS  PubMed  Google Scholar 

  65. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. The New England Journal of Medicine. 2011;365:2255–67.

    PubMed  Google Scholar 

  66. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. European Heart Journal. 2013;34(17):1279–91.

    PubMed Central  Google Scholar 

  67. Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Archives of Biochemistry and Biophysics. 1955;54:558–59.

    CAS  PubMed  Google Scholar 

  68. Molnar GD, Berge KG, Rosever JW, McGuckin WF, Achor WP. The effects of nicotinic acid in diabetes mellitus. Metabolism. 1964;13:181–89.

    CAS  PubMed  Google Scholar 

  69. Miettinen TA, Taskinen MR, Pelkonen R, Nikkila EA. Glucose tolerance and plasma insulin in man during acute and chronic administration of nicotinic acid. Acta Medica Scandinavica. 1969;186:247–53.

    CAS  PubMed  Google Scholar 

  70. Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264:723–26.

    CAS  PubMed  Google Scholar 

  71. Elam MB, Hunninghake DB, David KB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: The ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial JAMA. 2000;284:1263–70.

    CAS  Google Scholar 

  72. Stamler J. The coronary drug project - findings with regard to estrogen, dextrothyroxine, clofibrate and niacin. Advances in Experimental Medicine and Biology. 1977;82:52–75.

    CAS  PubMed  Google Scholar 

  73. Canner PL, Furberg CD, Terrin ML, McGovern ME. Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the coronary drug project). American Journal of Cardiology. 2005;95:254–7.

    CAS  PubMed  Google Scholar 

  74. Canner PL, Furberg CD, McGovern ME. Benefits of niacin in patients with versus without the metabolic syndrome and healed myocardial infarction (from the Coronary Drug Project). American Journal of Cardiology. 2006;97:477–9.

    CAS  PubMed  Google Scholar 

  75. Grundy SM, Vega GL, McGovern ME, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Archives of Internal Medicine. 2002;162:1568–76.

    CAS  PubMed  Google Scholar 

  76. Ambegaonkar BM, Wentworth C, Alien C, Sazonov V. Association between extended-release niacin treatment and glycemic control in patients with type 2 diabetes mellitus: analysis of an administrative-claims database. Metabolism. 2011;60:1038–44.

    CAS  PubMed  Google Scholar 

  77. Guyton JR, Fazio S, Adewale AJ, et al. Effect of extended-release niacin on new-onset diabetes among hyperlipidemic patients treated with ezetemibe/simvastatin in a randomized controlled trial. Diabetes Care. 2012;35:857–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Birjmohun RS, Hutten BA, Kastelein JJ, Stroes ES. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. Journal of the American College of Cardiology. 2005;45:185–97.

    CAS  PubMed  Google Scholar 

  79. Goldberg RB, Jacobson TA. Effects of niacin on glucose control in patients with dyslipidemia. Mayo Clinic Proceedings. 2008;83:470–8.

    CAS  PubMed  Google Scholar 

  80. Phan BA, Muñoz L, Shadzi P, et al. Effects of niacin on glucose levels, coronary stenosis progression, and clinical events in subjects with normal baseline glucose levels (<100 mg/dl): a combined analysis of the familial atherosclerosis treatment study (FATS), HDL-atherosclerosis treatment study (HATS), armed forces regression study (AFREGS), and carotid plaque composition by MRI during lipid-lowering (CPC) study. American Journal of Cardiology. 2013;111(3):352–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Montecucco F, Bertolotto M, Vuilleumier N, et al. Acipimox reduces circulating levels of insulin and associated neutrophilic inflammation in metabolic syndrome. American Journal of Physiology Endocrinology and Metabolism. 2011;300(4):E681–90.

    CAS  PubMed  Google Scholar 

  82. Cusi K, Kashyap S, Gastaldelli A, Bajaj M, Cersosimo E. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. American Journal of Physiology Endocrinology and Metabolism. 2007;292(6):E1775–81.

    CAS  PubMed  Google Scholar 

  83. Kelly JJ, Lawson JA, Cmpbell LV, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjects. Journal of Human Hypertension. 2000;14:567–72.

    CAS  PubMed  Google Scholar 

  84. Chang AM, Smith MJ, Galecki AT, Bloem CJ, Halter JB. Impaired beta-cell function in human aging: response to nicotinic acid induced insulin resistance. Journal of Clinical Endocrinology and Metabolism. 2006;91:3303–9.

    CAS  PubMed  Google Scholar 

  85. Poyntem AM, Gan SK, Kriketos AD, et al. Nicotinic acid induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metabolism. 2003;52:699–704.

    Google Scholar 

  86. Choi S, Yoon H, Oh KS, et al. Widespread effects of nicotinic acid on gene expression in insulin-sensitive tissues: implications for unwanted effects of nicotinic acid treatment. Metabolism. 2011;60:134–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Wilding JPH. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes, Obesity & Metabolism. 2012;14:973–82.

    CAS  Google Scholar 

  88. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375:1875–8.

    CAS  PubMed  Google Scholar 

  89. Lee M, Savera JL, Towfighic A, et al. Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: A meta-analysis. Atherosclerosis. 2011;217:492–8.

    CAS  PubMed  Google Scholar 

  90. Hermans MP. Non-invited review: prevention of microvascular diabetic complications by fenofibrate: lessons from FIELD and ACCORD. Diabetes & Vascular Disease Research. 2011;8:180–9.

    Google Scholar 

  91. Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovascular Diabetology. 2012;11:140.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Jonkers IJ, Mohrschladt MF, Westendorp RG, van der Laarse A, Smelt AH. Severe hypertriglyceridemia with insulin resistance is associated with systemic inflammation: reversal with bezafibrate therapy in a randomized controlled trial. American Journal of Medicine. 2002;112:275–80.

    CAS  PubMed  Google Scholar 

  93. Taniguchi A, Fukushima M, Sakai M, et al. Effects of bezafibrate on insulin sensitivity and insulin secretion in non-obese Japanese type 2 diabetic patients. Metabolism. 2001;50:477–80.

    CAS  PubMed  Google Scholar 

  94. Tenenbaum A, Fisman EZ, Boyko V, et al. Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Archives of Internal Medicine. 2006;166:737–41.

    CAS  PubMed  Google Scholar 

  95. Tenenbaum A, Motro M, Fisman EZ, et al. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation. 2004;109:2197–202.

    CAS  PubMed  Google Scholar 

  96. Tenenbaum H, Behar S, Boyko V, et al. Long-term effect of bezafibrate on pancreatic beta cell function and insulin resistance in patients with diabetes. Atherosclerosis. 2007;194:265–71.

    CAS  PubMed  Google Scholar 

  97. Flory JH, Ellenberg S, Szapary PO, Strom BL, Hennessy S. Antidiabetic action of bezafibrate in a large observational database. Diabetes Care. 2009;32:547–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ogawa S, Takeuchi K, Sugimura K, et al. Bezafibrate reduces blood glucose in type 2 diabetes mellitus. Metabolism. 2000;49:331–4.

    CAS  PubMed  Google Scholar 

  99. Teramoto T, Shirai K, Daida H, Yamada N. Effects of bezafibrate on lipid and glucose metabolism in dyslipidemic patients with diabetes: the J-BENEFIT study. Cardiovascular Diabetology. 2012;11:29.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ohrvall M, Lithell H, Johansson J, Vessby B. A comparison between the effects of gemfibrozil and simvastatin on insulin sensitivity in patients with non-insulin dependent diabetes mellitus and hyperlipoproteinemia. Metabolism. 1995;44:212–7.

    CAS  PubMed  Google Scholar 

  101. Whitelaw DC, Smith JM, Nattrass M. Effects of gemfibrozil on insulin resistance to fat metabolism in subjects with type 2 diabetes and hypertriglyceridaemia. Diabetes, Obesity & Metabolism. 2004;4:187–94.

    Google Scholar 

  102. Herna’ndez-Mijares A, Lluch I, Vizcarra E, Martínez-Triguero ML, Ascaso JF, Carmena R. Ciprofibrate effects on carbohydrate and lipid metabolism in type 2 diabetes mellitus subjects. Nutrition, Metabolism, and Cardiovascular Diseases. 2000;10:1–6.

    Google Scholar 

  103. Idzior-Walus B, Sieradzki J, Rostworowski W, et al. Effects of comicronised fenofibrate on lipid and insulin sensitivity in patients with polymetabolic syndrome X. European Journal of Clinical Investigation. 2000;30:871–8.

    CAS  PubMed  Google Scholar 

  104. Vega GL, Cater NB, Hadizadeh III DR, Meguro S, Grundy SM. Free fatty acid metabolism during fenofibrate treatment of the metabolic syndrome. Clinical Pharmacology and Therapeutics. 2003;74:236–44.

    CAS  PubMed  Google Scholar 

  105. Yong QW, Thavintharan S, Cheng A, Chew LS. The effect of fenofibrate on insulin sensitivity and plasma lipid profile in non-diabetic males with low high-density lipoprotein/dyslipidaemic syndrome. Annals of the Academy of Medicine, Singapore. 1999;28:778–82.

    CAS  PubMed  Google Scholar 

  106. Avogaro A, Miola M, Favaro A, et al. Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients. European Journal of Clinical Investigation. 2001;31:603–9.

    CAS  PubMed  Google Scholar 

  107. Mussoni L, Mannucci L, Sirtori C, et al. Effects of gemfibrozil on insulin sensitivity and on haemostatic variables in hypertriglyceridemic patients. Atherosclerosis. 2000;148:397–406.

    CAS  PubMed  Google Scholar 

  108. Lee HJ, Choi SS, Park MK, et al. Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochemical and Biophysical Research Communications. 2002;296:293–9.

    CAS  PubMed  Google Scholar 

  109. Bajaj M, Suraamornkul S, Hardies LJ, Glass L, Musi N, DeFronzo RA. Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia. 2007;50:1723–31.

    CAS  PubMed  Google Scholar 

  110. Sane T, Vuorinen-Markkola H, Yki-Järvinen H, Taskinen MR. Decreasing triglyceride by gemfibrozil therapy does not affect the glucoregulatory or antilipolytic effect of insulin in nondiabetic subjects with mild hypertriglyceridaemia. Metabolism. 1995;44:589–96.

    CAS  PubMed  Google Scholar 

  111. Kim H, Haluzik M, Asghar Z, et al. Peroxisome proliferators-activated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes. 2003;52:1770–8.

    CAS  PubMed  Google Scholar 

  112. Belfort R, Berria R, Cornell J, et al. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. Journal of Clinical Endocrinology and Metabolism. 2010;95:829–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wysocki J, Belowski D, Kalina M, Kochanski L, Okopien B, Kalina Z. Effects of micronized fenofibrate on insulin resistance in patients with metabolic syndrome. International Journal of Clinical Pharmacology and Therapeutics. 2004;42:212–7.

    CAS  PubMed  Google Scholar 

  114. Damci T, Tatliagac S, Osar Z, Ilkova H. Fenofibrate treatment is associated with better glycemic control and lower serum leptin and insulin levels in type 2 diabetic patients with hypertriglyceridemia. European Journal of Internal Medicine. 2003;14:357–60.

    CAS  PubMed  Google Scholar 

  115. Perreault L, Bergman BC, Hunerdosse DM, Howard DJ, Eckel RH. Fenofibrate administration does not affect muscle triglyceride concentration or insulin sensitivity in humans. Metabolism. 2011;60:1107–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Anderlová K, Dolezalová R, Housová J, et al. Influence of PPAR-alpha agonist fenofibrate on insulin sensitivity and selected adipose tissue-derived hormones in obese women with type 2 diabetes. Physiological Research. 2007;56:579–86.

    PubMed  Google Scholar 

  117. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 peoplewith type 2 diabetesmellitus (the FIELD study): randomized controlled trial. Lancet. 2005;366(9500):1849–61.

    CAS  PubMed  Google Scholar 

  118. Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357(9260):905–10.

    Google Scholar 

  119. Chew EY, Ambrosius WT, Davis MD, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. The New England Journal of Medicine. 2010;363:233–44.

    PubMed  Google Scholar 

  120. Rosenson RS, Wright RS, Farkouh M, Plutzky J. Modulating peroxisome proliferator-activated receptors for therapeutic benefit? Biology, clinical experience, and future prospects. American Heart Journal. 2012;164:672–80.

    CAS  PubMed  Google Scholar 

  121. Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. International Journal of Cardiology. 2009;136:4–16.

    PubMed  Google Scholar 

  122. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189:19–30.

    CAS  PubMed  Google Scholar 

  123. Connor WE. Importance of n-3 fatty acids in health and disease. American Journal of Clinical Nutrition. 2000;71:171S–5S.

    CAS  PubMed  Google Scholar 

  124. Saravanan P, Davidson NC, Schmidt EB, Calder PC. Cardiovascular effects of marine omega-3 fatty acids. Lancet. 2010;376:540–50.

    CAS  PubMed  Google Scholar 

  125. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology. 2011;58:2047–67.

    CAS  PubMed  Google Scholar 

  126. Bucher HC, Hengstler P, Schindler C, Meier G. N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. American Journal of Medicine. 2002;112:298–304.

    CAS  PubMed  Google Scholar 

  127. Filion KB, El Khoury F, Bielinski M, Schiller I, Dendukuri N, Brophy JM. Omega-3 fatty acids in high-risk cardiovascular patients: a meta-analysis of randomized controlled trials. BMC Cardiovascular Disorders. 2010;10:24.

    PubMed Central  PubMed  Google Scholar 

  128. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308:1024–33.

    CAS  PubMed  Google Scholar 

  129. Kwak SM, Myung SK, Lee YJ, Seo HG. Korean meta-analysis study group. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Archives of Internal Medicine. 2012;172(9):688–94.

    Google Scholar 

  130. Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clinical Cardiology. 2009;32:365–72.

    PubMed  Google Scholar 

  131. Zhao YT, Chen Q, Sun YX, et al. Prevention of sudden cardiac death with omega-3 fatty acids in patients with coronary heart disease: a meta-analysis of randomized controlled trials. Annals of Medicine. 2009;41:301–10.

    PubMed  Google Scholar 

  132. León H, Shibata MC, Sivakumaran S, Dorgan M, Chatterley T, Tsuyuki RT. Effect of fish oil on arrhythmias and mortality: systematic review. BMJ. 2008;337:a2931.

    PubMed Central  PubMed  Google Scholar 

  133. ORIGIN Trial Investigators, Bosch J, Gerstein HC. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. The New England Journal of Medicine. 2012;367:309–18.

    CAS  PubMed  Google Scholar 

  134. Glauber H, Wallace P, Griver K, Brechtel G. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Annals of Internal Medicine. 1988;108:663–8.

    CAS  PubMed  Google Scholar 

  135. Friday KE, Childs MT, Tsunehara CH, Fujimoto WY, Bierman EL, Ensinck JW. Elevated plasma glucose and lowered triglyceride levels from omega-3 fatty acid supplementation in type II diabetes. Diabetes Care. 1989;12:276–81.

    CAS  PubMed  Google Scholar 

  136. Borkman M, Chisholm DJ, Furler SM, et al. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes. 1989;38:1314–9.

    CAS  PubMed  Google Scholar 

  137. Nkondjock A, Receveur O. Fish-seafood consumption, obesity, and risk of type 2 diabetes: an ecological study. Diabetes & Metabolism. 2003;29:635–42.

    CAS  Google Scholar 

  138. Feskens EJ, Bowles CH, Kromhout D. Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care. 1991;14:935–41.

    CAS  PubMed  Google Scholar 

  139. Patel PS, Sharp SJ, Luben RN, et al. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: the European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care. 2009;32:1857–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Adler AI, Boyko EJ, Schraer CD, Murphy NJ. Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among Alaska Natives. Diabetes Care. 1994;17:1498–501.

    CAS  PubMed  Google Scholar 

  141. Djousse L, Biggs ML, Lemaitre RN, et al. Plasma omega-3 fatty acids and incident diabetes in older adults. American Journal of Clinical Nutrition. 2011;94:527–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH. ARIC study investigators. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the atherosclerosis risk in communities (ARIC) study. American Journal of Clinical Nutrition. 2003;78:91–8.

    CAS  PubMed  Google Scholar 

  143. Djoussé L, Gaziano JM, Buring JE, Lee IM. Dietary omega-3 fatty acids and fish consumption and risk of type 2 diabetes. American Journal of Clinical Nutrition. 2011;93:143–50.

    PubMed Central  PubMed  Google Scholar 

  144. Annuzzi G, Rivellese A, Capaldo B, et al. A controlled study on the effects of n-3 fatty acids on lipid and glucose metabolism in non-insulin-dependent diabetic patients. Atherosclerosis. 1991;87:65–73.

    CAS  PubMed  Google Scholar 

  145. Brostow DP, Odegaard AO, Koh WP, et al. Omega-3 fatty acids and incident type 2 diabetes: the Singapore Chinese health study. American Journal of Clinical Nutrition. 2011;94:520–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Mostad IL, Bjerve KS, Basu S, Sutton P, Frayn KN, Grill V. Addition of n-3 fatty acids to a 4-h lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus. Metabolism. 2009;58(12):1753–61.

    CAS  PubMed  Google Scholar 

  147. Vessby B. Dietary supplementation with n-3 polyunsaturated fatty acids in type 2 diabetes: effects on glucose homeostasis. Annal New York Academy Science. 1993;683:244–9.

    CAS  Google Scholar 

  148. van Woudenbergh GJ, van Ballegooijen AJ, Kuijsten A, et al. Eating fish and risk of type 2 diabetes: a population-based, prospective follow-up study. Diabetes Care. 2009;32:2021–6.

    PubMed Central  PubMed  Google Scholar 

  149. Kaushik M, Mozaffarian D, Spiegelman D, Manson JE, Willett WC, Hu FB. Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus. American Journal of Clinical Nutrition. 2009;90:613–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Montori VM, Farmer A, Wollan PC, Dinneen SF. Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care. 2000;23:1407–15.

    CAS  PubMed  Google Scholar 

  151. Friedberg CE, Janssen MJ, Heine RJ, Grobbee DE. Fish oil and glycemic control in diabetes. A Meta-Analysis Diabetes Care. 1998;21:494–500.

    CAS  Google Scholar 

  152. Hartweg J, Perera R, Montori VM, Dinneen SF, Neil HA, Farmer AJ. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews; 2008. doi:10.1002/14651858.CD003205.pub2

  153. Akinkuolie AO, Ngwa JS, Meigs JB, Djoussé L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clinical Nutrition. 2011;30:702–7.

    CAS  PubMed  Google Scholar 

  154. Zhou Y, Tian C, Jia C. Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies. British Journal of Nutrition. 2012;108:408–17.

    CAS  PubMed  Google Scholar 

  155. Wallin A, Di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care. 2012;35:918–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Xun P, He K. Fish consumption and incidence of diabetes: meta-analysis of data from 438,000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes Care. 2012;35:930–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Current Opinion in Clinical Nutrition and Metabolic Care. 2009;12:138–46.

    CAS  PubMed  Google Scholar 

  158. Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A Review Journal Nutrition Biochemistry. 2006;17:1–13.

    CAS  Google Scholar 

  159. de Santa Olalla L. M, Sánchez Muniz FJ, Vaquero MP. N-3 fatty acids in glucose metabolism and insulin sensitivity. Nutr Hosp. 2009;24:113–27.

    Google Scholar 

  160. Rudkowska I. Fish oils for cardiovascular disease: impact on diabetes. Maturitas. 2010;67:25–8.

    CAS  PubMed  Google Scholar 

  161. Wu JH, Micha R, Imamura F, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. British Journal of Nutrition. 2012;107(S2):S214–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Suchy D, Łabuzek K, Stadnicki A, Okopien B. Ezetimibe - a new approach in hypercholesterolemia management. Pharmacological Reports. 2011;63:1335–48.

    CAS  PubMed  Google Scholar 

  163. Doggrell SA. The ezetimibe controversy – can this be resolved by comparing the clinical trials with simvastatin and ezetimibe alone and together? Expert Opinion on Pharmacotherapy. 2012;13:1469–80.

    CAS  PubMed  Google Scholar 

  164. Labonte ED, Camarota LM, Rojas JC, et al. Reduced absorption of saturated fatty acids and resistance to diet-induced obesity and diabetes by ezetimibe-treated and Npc1l1−/− mice. American Journal of Physiology Gastrointestinal and Liver Physiology. 2008;295:G776–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Deushi M, Nomura M, Kawakami A, et al. Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome. FEBS Letters. 2007;581(29):5664–70.

    CAS  PubMed  Google Scholar 

  166. Nomura M, Ishii A, Kawakami A, Yoshida M. Inhibition of hepatic Niemann-pick C1-like 1 improves hepatic insulin resistance. American Physiology. 2009;297:E1030–8.

    CAS  Google Scholar 

  167. Zhong Y, Wang J, Gu P, Shao J, Lu B, Jiang S. Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice. Exp Diabetes Res 2012:420854.

  168. Muraoka T, Aoki K, Iwasaki T, et al. Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet. Metabolism. 2011;60:617–28.

    CAS  PubMed  Google Scholar 

  169. Yang L, Li X, Ji Y, et al. Effect of ezetimibe on incretin secretion in response to the intestinal absorption of a mixed meal. American Journal of Physiology Gastrointestinal and Liver Physiology. 2010;299(5):G1003–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Yang SJ, Choi JM, Kim L, et al. Chronic administration of ezetimibe increases active glucagon-like peptide-1 and improves glycemic control and pancreatic beta cell mass in a rat model of type 2 diabetes. Biochemical and Biophysical Research Communications. 2011;407:153–7.

    CAS  PubMed  Google Scholar 

  171. Dagli N, Yavuzkir M, Karaca I. The effects of high dose pravastatin and low dose pravastatin and ezetimibe combination therapy on lipid, glucose metabolism and inflammation. Inflammation. 2007;30:230–5.

    CAS  PubMed  Google Scholar 

  172. Yagi S, Akaike M, Aihara KI, et al. Ezetimibe ameliorates metabolic disorders and microalbuminuria in patients with hypercholesterolemia. Journal of Atherosclerosis and Thrombosis. 2010;17:173–80.

    CAS  PubMed  Google Scholar 

  173. Tamaki N, Ueno H, Morinaga Y, Shiiya T, Nakazato M. Ezetimibe ameliorates atherosclerotic and inflammatory markers, atherogenic lipid profiles, insulin sensitivity, and liver dysfunction in Japanese patients with hypercholesterolemia. Journal of Atherosclerosis and Thrombosis. 2012;19:532–8.

    CAS  PubMed  Google Scholar 

  174. Hiramitsu S, Ishiguro Y, Matsuyama H, et al. The effects of ezetimibe on surrogate markers of cholesterol absorption and synthesis in Japanese patients with dyslipidemia. Journal of Atherosclerosis and Thrombosis. 2010;17:106–14.

    CAS  PubMed  Google Scholar 

  175. Kishimoto M, Sugiyama T, Osame K, Takarabe D, Okamoto M, Noda M. Efficacy of ezetimibe as monotherapy or combination therapy in hypercholesterolemic patients with and without diabetes. The Journal of Medical Investigation. 2011;58:86–94.

    PubMed  Google Scholar 

  176. González-Ortiz M, Martínez-Abundis E, Kam-Ramos AM, Hernández-Salazar E, Ramos-Zavala MG. Effect of ezetimibe on insulin sensitivity and lipid profile in obese and dyslipidaemic patients. Cardiovascular Drugs and Therapy. 2006;20:143–6.

    PubMed  Google Scholar 

  177. Kikuchi K, Nezu U, Inazumi K, et al. Double-Blind Randomized Clinical Trial of the Effects of Ezetimibe on Postprandial Hyperlipidaemia and Hyperglycaemia. Journal of Atherosclerosis and Thrombosis. 2012;19(12):1093–101.

    CAS  PubMed  Google Scholar 

  178. Leiter LA, Betteridge DJ, Farnier M, et al. Lipid-altering efficacy and safety profile of combination therapy with ezetimibe/statin vs. statin monotherapy in patients with and without diabetes: an analysis of pooled data from 27 clinical trials. Diabetes, Obesity & Metabolism. 2011;13:615–28.

    CAS  Google Scholar 

  179. Drew BG, Duffy SJ, Formosa MF, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119:2103–11.

    CAS  PubMed  Google Scholar 

  180. Fryirs MA, Barter PJ, Appavoo M, et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30:1642–48.

    CAS  PubMed  Google Scholar 

  181. Barter PJ, Rye KA, Tardif JC, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Circulation. 2011;124:555–62.

    CAS  PubMed  Google Scholar 

  182. Briand F, Prunet-Marcassus B, Thieblemont Q, et al. Raising HDL with CETP inhibitor torcetrapib improves glucose homeostasis in dyslipidemic and insulin resistant hamsters. Atherosclerosis. 2014;233:359–62.

    CAS  PubMed  Google Scholar 

  183. Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. Journal of Clinical Investigation. 1996;97:2917–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Siebel AL, Natoli AK, Yap FY, et al. Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circulation Research. 2013;13:167–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barak Zafrir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafrir, B., Jain, M. Lipid-lowering Therapies, Glucose Control and Incident Diabetes: Evidence, Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 28, 361–377 (2014). https://doi.org/10.1007/s10557-014-6534-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6534-9

Keywords

Navigation