Skip to main content

Advertisement

Log in

Diverse Regulation of Cardiac Expression of Relaxin Receptor by α1- and β1-Adrenoceptors

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Relaxin, a new drug for heart failure therapy, exerts its cardiac actions through relaxin family peptide receptor 1 (RXFP1). Factors regulating RXFP1 expression remain unknown. We have investigated effects of activation of adrenoceptors (AR), an important modulator in the development and prognosis of heart failure, on expression of RXFP1 in rat cardiomyocytes and mouse left ventricles (LV).

Methods

Expression of RXFP1 at mRNA (real-time PCR) and protein levels (immunoblotting) was measured in cardiomyocytes treated with α- and β-AR agonists or antagonists. RXFP1 expression was also determined in the LV of transgenic mouse strains with cardiac-restricted overexpression of α1A-, α1B- or β2-AR. Specific inhibitors were used to explore signal pathways involved in α1-AR mediated regulation of RXFP1 in cardiomyocytes.

Results

In cultured cardiomyocytes, α1-AR stimulation resulted in 2–3 fold increase in RXFP1 mRNA (P < 0.001), which was blocked by specific inhibitors for protein kinase C (PKC) or mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK). Activation of β1-, but not β2-AR, significantly inhibited RXFP1 expression (P < 0.001). Relative to respective wild-type controls, RXFP1 mRNA levels in the LV of mice overexpressing α1A- or α1B-AR were increased by 3- or 10-fold, respectively, but unchanged in β2-AR transgenic hearts. Upregulation by α1-AR stimulation RXFP1 expression was confirmed at protein levels both in vitro and in vivo.

Conclusions

Expression of RXFP1 was up-regulated by α1-AR but suppressed by β-AR, mainly β1-AR subtype, in cardiomyocytes. Future studies are warranted to characterize the functional significance of such regulation, especially in the setting of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Du XJ, Bathgate RA, Samuel CS, Dart AM, Summers RJ. Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol. 2010;7:48–58.

    Article  CAS  PubMed  Google Scholar 

  2. Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension. 2010;56:2–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Grossman J, Frishman WH. Relaxin: a new approach for the treatment of acute congestive heart failure. Cardiol Rev. 2010;18:305–12.

    Article  PubMed  Google Scholar 

  4. Zhang J, Qi YF, Geng B, et al. Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides. 2005;26:1632–9.

    Article  CAS  PubMed  Google Scholar 

  5. Perna AM, Masini E, Nistri S, et al. Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 2005;19:1525–7.

    CAS  PubMed  Google Scholar 

  6. Moore XL, Tan SL, Lo CY, et al. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology. 2007;148:1582–9.

    Article  CAS  PubMed  Google Scholar 

  7. Dschietzig T, Bartsch C, Kinkel T, et al. Myocardial relaxin counteracts hypertrophy in hypertensive rats. Ann N Y Acad Sci. 2005;1041:441–3.

    Article  CAS  PubMed  Google Scholar 

  8. Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.

    Article  CAS  PubMed  Google Scholar 

  9. Hernandez-Montfort JA, Arora S, Slawsky MT. Relaxin for treatment of acute heart failure: making the case for treating targeted patient profiles. Curr Heart Fail Rep. 2013;10:198–203.

    Article  CAS  PubMed  Google Scholar 

  10. Hsu SY, Nakabayashi K, Nishi S, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295:671–4.

    Article  CAS  PubMed  Google Scholar 

  11. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93:405–80.

    Article  CAS  PubMed  Google Scholar 

  12. Osheroff PL, King KL. Binding and cross-linking of 32P-labeled human relaxin to human uterine cells and primary rat atrial cardiomyocytes. Endocrinology. 1995;136:4377–81.

    CAS  PubMed  Google Scholar 

  13. Samuel CS, Unemori EN, Mookerjee I, et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology. 2004;145:4125–33.

    Article  CAS  PubMed  Google Scholar 

  14. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee S, Biondi-Zoccai G, Abbate A, et al. Benefits of beta blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ. 2013;346:f55.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jensen BC, O’Connell TD, Simpson PC. α1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol. 2011;51:518–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Woodcock EA, Du XJ, Reichelt ME, et al. Cardiac α1-adrenergic drive in pathological remodelling. Cardiovasc Res. 2008;77:452–62.

    Article  CAS  PubMed  Google Scholar 

  18. Moore XL, Hong A, Du XJ. α-adrenergic activation upregulates expression of relaxin receptor RXFP1 in cardiomyocytes. Ann N Y Acad Sci. 2009;1160:285–6.

    Article  CAS  PubMed  Google Scholar 

  19. Lin F, Owens WA, Chen S, et al. Targeted α1A-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res. 2001;89:343–50.

    Article  CAS  PubMed  Google Scholar 

  20. Milano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active α1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A. 1994;91:10109–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science. 1994;264:582–6.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Gao XM, Fang L, et al. Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol. 2011;31:834–41.

    Article  CAS  PubMed  Google Scholar 

  23. Osheroff PL, Cronin MJ, Lofgren JA. Relaxin binding in the rat heart atrium. Proc Natl Acad Sci U S A. 1992;89:2384–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RA. Characterization of the mouse and rat relaxin receptors. Ann N Y Acad Sci. 2005;1041:8–12.

    Article  CAS  PubMed  Google Scholar 

  25. Yan W, Chen J, Wiley AA, Crean-Harris BD, Bartol FF, Bagnell CA. Relaxin (RLX) and estrogen affect estrogen receptor alpha, vascular endothelial growth factor, and RLX receptor expression in the neonatal porcine uterus and cervix. Reproduction. 2008;135:705–12.

    Article  CAS  PubMed  Google Scholar 

  26. Vodstrcil LA, Shynlova O, Westcott K, et al. Progesterone withdrawal, and not increased circulating relaxin, mediates the decrease in myometrial relaxin receptor (RXFP1) expression in late gestation in rats. Biol Reprod. 2010;83:825–32.

    Article  CAS  PubMed  Google Scholar 

  27. Noma T, Lemaire A, Nega Prasad SV, et al. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest. 2007;117:2445–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pereira L, Cheng H, Lao DH, et al. Epac2 mediates cardiac beta1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation. 2013;127:913–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gong K, Li Z, Xu M, Du J, Lu Z, Zhang Y. A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by beta2-adrenergic receptors. J Biol Chem. 2008;283:29028–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Noor N, Patel CB, Rockman HA. Beta-arrestin: a signaling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol. 2011;51:534–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Xu Q, Dalic A, Fang L, et al. Myocardial oxidative stress contributes to transgenic beta-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol. 2011;162:1012–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kompa AR, Samuel CS, Summers RJ. Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. Br J Pharmacol. 2002;137:710–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dschietzig T, Alexiou K, Kinkel HT, Baumann G, Matschke K, Stangl K. The positive inotropic effect of relaxin-2 in human atrial myocardium is preserved in end-stage heart failure: role of G(i)-phosphoinositide-3 kinase signaling. J Card Fail. 2011;17:158–66.

    Article  CAS  PubMed  Google Scholar 

  34. Parikh A, Patel D, McTiernan CF, et al. Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ Res. 2013;113:313–21.

    Article  CAS  PubMed  Google Scholar 

  35. Samuel CS, Du XJ, Bathgate RA, Summers RJ. ‘Relaxin’ the stiffened heart and arteries: the therapeutic potential for relaxin in the treatment of cardiovascular disease. Pharmacol Ther. 2006;112:529–52.

    Article  CAS  PubMed  Google Scholar 

  36. Xu Q, Chakravorty A, Bathgate RA, Dart AM, Du XJ. Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats. Hypertension. 2010;55:1260–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dschietzig T, Teichman S, Unemori E, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail. 2009;15:182–90.

    Article  CAS  PubMed  Google Scholar 

  38. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation. 1993;87:IV90–6.

    CAS  PubMed  Google Scholar 

  39. Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler M. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23:570–8.

    Article  CAS  PubMed  Google Scholar 

  40. Metra M, Ponikowski P, Cotter G, et al. Effects of serelaxin in subgroups of patients with acute heart failure: results from RELAX-AHF. Eur Heart J. 2013;34:3128–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by project grants from the National Health and Medical Research Council (NHMRC) (1004235 and 1005329 to XJD), the Victorian Government’s Operational Infrastructure Program and Nature Science Fund of China (30910103902 to YYZ and XJD). EAW, AMD and XJD are NHMRC research fellows.

Disclosure Statement

All authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, XL., Su, Y., Fan, Y. et al. Diverse Regulation of Cardiac Expression of Relaxin Receptor by α1- and β1-Adrenoceptors. Cardiovasc Drugs Ther 28, 221–228 (2014). https://doi.org/10.1007/s10557-014-6525-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6525-x

Keywords

Navigation