Skip to main content

Advertisement

Log in

Linking the Cardiomyocyte Circadian Clock to Myocardial Metabolism

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

The energetic demands imposed upon the heart vary dramatically over the course of the day. In the face of equally commanding oscillations in the neurohumoral mileu, the heart must respond both rapidly and appropriately to its diurnal environment, for the survival of the organism. A major response of the heart to alterations in workload, nutrients, and various neurohumoral stimuli is at the level of metabolism. Failure of the heart to achieve adequate metabolic adaptation results in contractile dysfunction.

Discussion

Substantial evidence is accumulating which suggests that a transcriptionally based timekeeping mechanism known as the circadian clock plays a role in mediating myocardial metabolic rhythms. Here, we provide an overview of our current knowledge regarding the interplay between the circadian clock within the cardiomyocyte and myocardial metabolism. This includes a particular focus on circadian clock mediated regulation of endogenous energy stores, as well as those mechanisms orchestrating circadian rhythms in metabolic gene expression.

Conclusion

An essential need to elucidate fully the functions of this molecular mechanism in the heart remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–43.

    PubMed  CAS  Google Scholar 

  2. Aronow WS, Ahn C. Circadian variation of death from congestive heart failure after myocardial infarction in patients >60 years of age. Am J Cardiol. 2003;92:1354–5.

    Article  PubMed  Google Scholar 

  3. Carson PA, O’Connor CM, Miller AB, et al. Circadian rhythm and sudden death in heart failure: results from Prospective Randomized Amlodipine Survival Trial. J Am Coll Cardiol. 2000;36:541–6.

    Article  PubMed  CAS  Google Scholar 

  4. Mukamal KJ, Muller JE, Maclure M, Sherwood JB, Mittleman MA. Increased risk of congestive heart failure among infarctions with nighttime onset. Am Heart J. 2000;140:438–42.

    Article  PubMed  CAS  Google Scholar 

  5. Prinz PN, Halter J, Benedetti C, Raskind M. Circadian variation of plasma catecholamines in young and old men: relation to rapid eye movement and slow wave sleep. J Clin Endocrinol Metab. 1979;49:300–4.

    Article  PubMed  CAS  Google Scholar 

  6. Degaute JP, van de Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991;18:199–210.

    PubMed  CAS  Google Scholar 

  7. Turton MB, Deegan T. Circadian variations of plasma catecholamine, cortisol and immunoreactive insulin concentrations in supine subjects. Clin Chim Acta. 1974;55:389–97.

    Article  PubMed  CAS  Google Scholar 

  8. Richards AM, Nicholls MG, Espiner EA, Ikram H, Cullens M, Hinton D. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens. 1986;8:153–66.

    Article  CAS  Google Scholar 

  9. Young ME. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol. 2006;290:H1–H16.

    Article  PubMed  CAS  Google Scholar 

  10. Reilly DF, Westgate EJ, FitzGerald GA. Peripheral circadian clocks in the vasculature. Arterioscler Thromb Vasc Biol. 2007;27:1694–705.

    Article  PubMed  CAS  Google Scholar 

  11. Takeda N, Maemura K. Chronobiology of acute myocardial infarction molecular biology. Biol Rhythm Res. 2007;38:233–45.

    Article  CAS  Google Scholar 

  12. Clark H, Carling D, Saggerson D. Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur J Biochem. 2004;271:2215–24.

    Article  PubMed  CAS  Google Scholar 

  13. Longnus SL, Wambolt RB, Barr RL, Lopaschuk GD, Allard MF. Regulation of myocardial fatty acid oxidation by substrate supply. Am J Physiol Heart Circ Physiol. 2001;281:H1561–H1567.

    PubMed  CAS  Google Scholar 

  14. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.

    Article  PubMed  CAS  Google Scholar 

  15. van der Lee KA, Vork MM, De Vries JE, et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res. 2000;41:41–7.

    PubMed  Google Scholar 

  16. Campbell FM, Kozak R, Wagner A, et al. A role for PPAR{alpha} in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPAR{alpha} are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem. 2002;277:4098–103.

    Article  PubMed  CAS  Google Scholar 

  17. Young ME, Goodwin GW, Ying J, et al. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab. 2001;280:E471–E479.

    PubMed  CAS  Google Scholar 

  18. Wu P, Sato J, Zhao Y, Jaskiewicz J, Popov KM, Harris RA. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998;329:197–201.

    PubMed  CAS  Google Scholar 

  19. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.

    Article  PubMed  CAS  Google Scholar 

  20. Young ME, McNulty PH, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms. Circulation. 2002;105:1861–70.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng L, Ding G, Qin Q, et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med. 2004;10:1245–50.

    Article  PubMed  CAS  Google Scholar 

  22. Osorio JC, Stanley WC, Linke A, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation. 2002;106:606–12.

    Article  PubMed  CAS  Google Scholar 

  23. Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest. 2000;105:1723–30.

    Article  PubMed  CAS  Google Scholar 

  24. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923–31.

    Article  PubMed  CAS  Google Scholar 

  25. Young ME, Guthrie PH, Razeghi P, et al. Impaired long chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes. 2002;51:2587–95.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18:1692–700.

    Article  PubMed  CAS  Google Scholar 

  28. McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus. A 1H-Magnetic resonance spectroscopy study. Circulation. 2007;116:1170–5.

    Article  PubMed  Google Scholar 

  29. Young ME, Razeghi P, Cedars AM, Guthrie PH, Taegtmeyer H. Intrinsic diurnal variations in cardiac metabolism and contractile function. Circ Res 2001;89:1199–208.

    Article  PubMed  CAS  Google Scholar 

  30. Durgan DJ, Moore MW, Ha NP, et al. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate. Am J Physiol Heart Circ Physiol. 2007;293:H2385–H2393.

    Article  PubMed  CAS  Google Scholar 

  31. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273:29530–9.

    Article  PubMed  CAS  Google Scholar 

  32. Edery I. Circadian rhythms in a nutshell. Physiol Genomics. 2000;3:59–74.

    PubMed  CAS  Google Scholar 

  33. Duffield GE. DNA microarray analysis of circadian timing: the genomic basis of biological time. J Neuroendocrinol. 2003;15:991–1002.

    Article  PubMed  CAS  Google Scholar 

  34. Lowrey PL, Takahashi H. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41.

    Article  PubMed  CAS  Google Scholar 

  35. Oishi K, Miyazaki K, Kadota K, et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem. 2003;278:41519–27.

    Article  PubMed  CAS  Google Scholar 

  36. Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006;16:1107–15.

    Article  PubMed  CAS  Google Scholar 

  37. Martino T, Arab S, Straume M, et al. Day/night rhythms in gene expression of the normal murine heart. J Mol Med. 2004;82:256–64.

    Article  PubMed  CAS  Google Scholar 

  38. Storch KF, Lipan O, Leykin I, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417:78–83.

    Article  PubMed  CAS  Google Scholar 

  39. Durgan DJ, Trexler NA, Egbejimi O, et al. The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J Biol Chem. 2006;281:24254–69.

    Article  PubMed  CAS  Google Scholar 

  40. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–95.

    Article  PubMed  Google Scholar 

  41. Burkhoff D, Weiss R, Schulman S, Kalil-Filho R, Wannenburg T, Gerstenblith G. Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Physiol. 1991;261:H741–H750.

    PubMed  CAS  Google Scholar 

  42. Kjekshus J, Mjos O. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest. 1972;51:1767.

    Article  PubMed  CAS  Google Scholar 

  43. Mjos OD. Effects of free fatty acids on myocardial oxygen consumption in intact dogs. J Clin Invest. 1971;50:1386–9.

    Article  PubMed  CAS  Google Scholar 

  44. Vincent G, Bouchard B, Khairallah M, Des Rosiers C. Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts. Am J Physiol Heart Circ Physiol. 2004;286:H257–H266.

    Article  PubMed  CAS  Google Scholar 

  45. Marquez S, Crespo P, Carlini V, et al. The metabolism of phospholipids oscillates rhythmically in cultures of fibroblasts and is regulated by the clock protein PERIOD1. FASEB J. 2004;18:519–21.

    PubMed  CAS  Google Scholar 

  46. Lake AC, Sun Y, Li JL, et al. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res. 2005;46:2477–87.

    Article  PubMed  CAS  Google Scholar 

  47. Stone SJ, Myers HM, Watkins SM, et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2004;279:11767–76.

    Article  PubMed  CAS  Google Scholar 

  48. Coleman RA, Lee DP. Enzymes of triglyceride synthesis and their regulation. Prog Lipid Res. 2004;43:134–76.

    Article  PubMed  CAS  Google Scholar 

  49. Bray MS, Shaw CA, Moore MWS, et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol. (in press).

  50. Ishikawa K, Shimazu T. Daily rhythms of glycogen synthetase and phosphorylase activities in rat liver: influence of food and light. Life Sci. 1976;19:1873–8.

    Article  PubMed  CAS  Google Scholar 

  51. Stavinoha MA, RaySpellicy JW, Hart-Sailors ML, Mersmann HJ, Bray MS, Young ME. Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol. 2004;287:E878–E887.

    Article  CAS  Google Scholar 

  52. Forman BM, Chen J, Blumberg B, et al. Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Mol Endocrinol. 1994;8:1253–61.

    Article  PubMed  CAS  Google Scholar 

  53. Adelmant G, Beque A, Stehelin D, Laudet V. A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repressing activity. Proc Natl Aad Sci U S A. 1996;93:3553–8.

    Article  CAS  Google Scholar 

  54. Dussault I, Giguere V. Differential regulation of the N-myc proto-oncogene by ROR alpha and RVR, two orphan members of the superfamily of nuclear hormone receptors. Mol Cell Biol. 1997;17:1860–7.

    PubMed  CAS  Google Scholar 

  55. Bois-Joyeux B, Chauvet C, Nacer-Cherif H, et al. Modulation of the far-upstream enhancer of the rat alpha-fetoprotein gene by members of the ROR alpha, Rev-erb alpha, and Rev-erb beta groups of monomeric orphan nuclear receptors. DNA Cell Biol 2000;19:589–99.

    Article  PubMed  CAS  Google Scholar 

  56. Raspe E, Duez H, Gervois P, et al. Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J Biol Chem 2001;276:2865–71.

    Article  PubMed  CAS  Google Scholar 

  57. Lau P, Nixon SJ, Parton RG, Muscat GE. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem. 2004;279:36828–40.

    Article  PubMed  CAS  Google Scholar 

  58. Ramakrishnan SN, Lau P, Burke LJ, Muscat GE. Rev-erbbeta regulates the expression of genes involved in lipid absorption in skeletal muscle cells: evidence for cross-talk between orphan nuclear receptors and myokines. J Biol Chem. 2005;280:8651–9.

    Article  PubMed  CAS  Google Scholar 

  59. Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

    Article  PubMed  CAS  Google Scholar 

  60. Ueda HR, Chen W, Adachi A, et al. A transcription factor response element for gene expression during the circadian night. Nature. 2002;418:534–9.

    Article  PubMed  CAS  Google Scholar 

  61. Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–9.

    Article  PubMed  CAS  Google Scholar 

  62. Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Aad Sci U S A. 1998;95:5474–9.

    Article  CAS  Google Scholar 

  63. Dunlap JC. Molecular basis of circadian clocks. Cell. 1999;96:271–90.

    Article  PubMed  CAS  Google Scholar 

  64. Hardin PE. Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms. 2004;19:348–60.

    Article  PubMed  CAS  Google Scholar 

  65. Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006;40:409–48.

    Article  PubMed  CAS  Google Scholar 

  66. Ripperger JA, Shearman LP, Reppert SM, Schibler U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 2000;14:679–89.

    PubMed  CAS  Google Scholar 

  67. Falvey E, Fleury-Olela F, Schibler U. The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences. EMBO J. 1995;14:4307–17.

    PubMed  CAS  Google Scholar 

  68. Fonjallaz P, Ossipow V, Wanner G, Schibler U. The two PAR leucine zipper proteins, TEF and DBP, display similar circadian and tissue-specific expression, but have different target promoter preferences. EMBO J. 1996;15:351–62.

    PubMed  CAS  Google Scholar 

  69. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15:995–1006.

    Article  PubMed  CAS  Google Scholar 

  70. Kung TA, Egbejimi O, Cui J, et al. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J Mol Cell Cardiol. 2007;43:744–53.

    Article  PubMed  CAS  Google Scholar 

  71. Iitaka C, Miyazaki K, Akaike T, Ishida N. A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J Biol Chem. 2005;280:29397–402.

    Article  PubMed  CAS  Google Scholar 

  72. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293:510–4.

    Article  PubMed  CAS  Google Scholar 

  73. Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005;386:575–81.

    Article  PubMed  CAS  Google Scholar 

  74. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447:477–81.

    Article  PubMed  CAS  Google Scholar 

  75. Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A. 2007;104:5223–8.

    Article  PubMed  CAS  Google Scholar 

  76. Lee SS, Pineau T, Drago J, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995;15:3012–22.

    PubMed  CAS  Google Scholar 

  77. Aoyama T, Peters J, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem. 1998;273:5678–84.

    Article  PubMed  CAS  Google Scholar 

  78. Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP. The role of the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fat Acids. 1999;60:339–43.

    Article  CAS  Google Scholar 

  79. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 2007;115:2540–8.

    Article  PubMed  Google Scholar 

  80. Kassam A, Capone JP, Rachubinski RA. Orphan nuclear hormone receptor RevErbalpha modulates expression from the promoter of the hydratase-dehydrogenase gene by inhibiting peroxisome proliferator-activated receptor alpha-dependent transactivation. J Biol Chem. 1999;274:22895–900.

    Article  PubMed  CAS  Google Scholar 

  81. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294:1866–70.

    Article  PubMed  CAS  Google Scholar 

  82. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126:801–10.

    Article  PubMed  CAS  Google Scholar 

  83. Giguere V, Yang N, Sequi P, Evans RM. Identification of a new class of steroid hormone receptors. Nature. 1988;331:91–4.

    Article  PubMed  CAS  Google Scholar 

  84. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789–99.

    Article  PubMed  CAS  Google Scholar 

  85. Dufour CR, Wilson BJ, Huss JM, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5:345–56.

    Article  PubMed  CAS  Google Scholar 

  86. Englund A, Behrens S, Wegscheider K, Rowland E. Circadian variation of malignant ventricular arrhythmias in patients with ischemic and nonischemic heart disease after cardioverter defibrillator implantation. European 7219 Jewel Investigators. J Am Coll Cardiol. 1999;34:1560–8.

    Article  PubMed  CAS  Google Scholar 

  87. Arntz HR, Willich SN, Oeff M, et al. Circadian variation of sudden cardiac death reflects age-related variability in ventricular fibrillation. Circulation. 1993;1993:2284–9.

    Google Scholar 

  88. Muller JE, Ludmer PL, Willich SN, et al. Circadian variation in the frequency of sudden cardiac death. Circulation. 1987;75:131–8.

    PubMed  CAS  Google Scholar 

  89. Yamashita T, Murakawa Y, Sezaki K, et al. Circadian variation of paroxysmal atrial fibrillation. Circulation. 1997;96:1537–41.

    PubMed  CAS  Google Scholar 

  90. Yamashita T, Murakawa Y, Hayami N, et al. Relation between aging and circadian variation of paroxysmal atrial fibrillation. Am J Cardiol. 1998;82:1364–7.

    Article  PubMed  CAS  Google Scholar 

  91. Yamashita T, Sekiguchi A, Iwasaki YK, et al. Circadian variation of cardiac K+ channel gene expression. Circulation. 2003;107:1917–22.

    Article  PubMed  Google Scholar 

  92. Meredith AL, Wiler SW, Miller BH, et al. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci. 2006;9:1041–9.

    Article  PubMed  CAS  Google Scholar 

  93. Kuhlman SJ, McMahon DG. Encoding the ins and outs of circadian pacemaking. J Biol Rhythms. 2006;21:470–81.

    Article  PubMed  CAS  Google Scholar 

  94. Inouye ST, Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Aad Sci U S A. 1979;76:5962–6.

    Article  CAS  Google Scholar 

  95. Ko GY, Ko M, Dryer SE. Circadian and cAMP-dependent modulation of retinal cone cGMP-gated channels does not require protein synthesis or calcium influx through L-type channels. Brain Res. 2004;1021:277–80.

    Article  PubMed  CAS  Google Scholar 

  96. Ko ML, Liu Y, Dryer SE, Ko GY. The expression of L-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. J Neurochem. 2007;103:784–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Moore for technical support regarding the data presented in Fig. 2. This work was supported by the National Heart, Lung, and Blood Institute grant HL074259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durgan, D.J., Young, M.E. Linking the Cardiomyocyte Circadian Clock to Myocardial Metabolism. Cardiovasc Drugs Ther 22, 115–124 (2008). https://doi.org/10.1007/s10557-008-6086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6086-y

Key words

Navigation