Skip to main content

Advertisement

Log in

Effect of Long-term Monotherapy with the Aldosterone Receptor Blocker Eplerenone on Cytoskeletal Proteins and Matrix Metalloproteinases in Dogs with Heart Failure

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Long-term monotherapy with the aldosterone receptor blocker eplerenone in dogs with HF was previously shown to improve LV systolic and diastolic function. This study examined the effects of long-term monotherapy with the aldosterone receptor blocker eplerenone on mRNA and protein expression of the cytoskeletal proteins titin, tubulin, fibronectin and vimentin, the matrix metalloproteinases (MMPs)-1, -2 and -9, and the tissue inhibitors of MMPs (TIMPs)-1 and -2 in left ventricular (LV) myocardium of dogs with heart failure (HF).

Methods

HF was produced in 12 dogs by intracoronary microembolizations. Dogs were randomized to 3 months oral therapy with eplerenone (10 mg/kg twice daily, n = 6) or to no therapy at all (HF-control, n = 6). LV tissue from six normal dogs was used for comparison. mRNA expression was measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and protein expression using Western blots.

Results

Compared to NL dogs, control dogs showed upregulation of mRNA and protein expression for tubulin, fibronectin, MMP-1, -2 and -9, and down-regulation of mRNA and protein expression for total titin. Normalization of mRNA and protein expression for all these genes was seen after treatment with eplerenone. N2BA/N2B-titin mRNA expression ratio increased significantly in dogs with HF treated with eplerenone. No differences in expression for vimentin, TIMP-1 and -2 were observed among groups.

Conclusions

In dogs with HF, long-term eplerenone therapy normalizes mRNA and protein expression of key cytoskeletal proteins and MMPs. Reversal of these molecular maladaptations may partly explain the improvement in LV diastolic function seen after long-term therapy with eplerenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-adosterone system. Circulation.. 1991;83:1849–65.

    PubMed  CAS  Google Scholar 

  2. Wilke A, Funck R, Rupp H. Effects of the renin-angiotensin-aldosterone system on the cardiac interstitium in heart failure. Basic Res Cardiol.. 1996;91:79–84.

    Article  PubMed  CAS  Google Scholar 

  3. Dieterich HA, Wendt C, Saborowski F. Cardioprotection by aldosterone receptor antagonism in heart failure. Part I. The role of aldosterone in heart failure. Fiziol Cheloveka.. 2005;31:97–105.

    PubMed  CAS  Google Scholar 

  4. Wu Y, Bell SP, Trombitas K, et al. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation.. 2002;106:1384–9.

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki G, Morita H, Mishima T, et al. Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation.. 2002;106:2967–72.

    Article  PubMed  CAS  Google Scholar 

  6. Sabbah HN, Sharov VG, Lesch M, Goldstein S. Progression of heart failure: a role for interstitial fibrosis. Mol Cell Biochem.. 1995;147:29–34.

    Article  PubMed  CAS  Google Scholar 

  7. Morita H, Khanal S, Rastogi S, et al. Selective matrix metalloproteinase inhibition attenuates progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Am J Physiol.. 2006;290:H25–7.

    Google Scholar 

  8. Funck RC, Wilke A, Rupp H, Brilla CG. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Med Biol.. 1997;432:35–44. Review.

    PubMed  CAS  Google Scholar 

  9. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med.. 1999;341:709–17. Sep 2.

    Article  PubMed  CAS  Google Scholar 

  10. Pitt B, Williams G, Remme W, Martinez F, Lopez-Sendon J, Zannad F, et al. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther.. 2001;15:79–87.

    Article  PubMed  CAS  Google Scholar 

  11. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone Post-acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med.. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  12. Sabbah HN, Stein PD, Kono T, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol.. 1991;260:H1379–84.

    PubMed  CAS  Google Scholar 

  13. Sabbah HN, Shimoyama H, Kono T, et al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation.. 1994;89:2852–9.

    PubMed  CAS  Google Scholar 

  14. Spencer WE, Christensen MJ. Multiplex relative RT-PCR method for verification of differential gene expression. Biotechniques. 1999;27:1044–6, 1048–50, 1052.

    Google Scholar 

  15. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation. 1991;83:1866–72.

    PubMed  CAS  Google Scholar 

  16. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc.. 2006;1:581–5.

    Article  PubMed  CAS  Google Scholar 

  17. Gupta RC, Mishra S, Mishima T, et al. Reduced sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholamban in left ventricular myocardium of dogs with heart failure. J Mol Cell Cardiol.. 1999;7:1381–9.

    Article  Google Scholar 

  18. Mishra S, Gupta RC, Tiwari N, et al. Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant.. 2002;21:366–73.

    Article  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, et al. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.. 1951;227:680–85.

    Google Scholar 

  20. Barnes BJ, Howard PA. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure. Ann Pharmacother.. 2005 Jan;39:68–76.

    CAS  Google Scholar 

  21. Staessen J, Lijnen P, Fagard R, Verschueren LJ, Amery A. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981;91:457–65.

    Article  PubMed  CAS  Google Scholar 

  22. McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation. 1999;100:1056–64.

    PubMed  CAS  Google Scholar 

  23. Brown NJ. Eplerenone: cardiovascular protection. Circulation.. 2003;107:2512–8. Review.

    Article  PubMed  CAS  Google Scholar 

  24. Keller TCS. Structure and function of titin and nebulin. Curr Opin Cell Biol.. 1995;7:32–8.

    Article  PubMed  CAS  Google Scholar 

  25. Granzier H, Wu Y, Siegfried L, et al. Titin: physiological function and role in cardiomyopathy and failure. Heart Fail Rev.. 2005;10:211–23.

    Article  PubMed  Google Scholar 

  26. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol.. 2000;32:2151–62.

    Article  PubMed  CAS  Google Scholar 

  27. Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation.. 2002;106:1333–41.

    Article  PubMed  Google Scholar 

  28. Wu Y, Bell SP, Trombitas K, et al. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation.. 2002;106:1384–89.

    Article  PubMed  CAS  Google Scholar 

  29. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res.. 2000;86:59–67.

    PubMed  CAS  Google Scholar 

  30. Miller KM, Granzier H, Ehler E, Gregorio CC. The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol.. 2004;14:119–26.

    Article  PubMed  CAS  Google Scholar 

  31. Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML. Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res.. 2003;59:86–94.

    Article  PubMed  CAS  Google Scholar 

  32. Aquila-Pastir LA, Dipaola NR, Matteo RG, Smedira NG, McCarthy PM, Moravec CS. Quantification and distribution of beta-tubulin in human cardiac myocytes. J Mol Cell Cardiol.. 2002;34:1513–23.

    Article  PubMed  CAS  Google Scholar 

  33. Sharov VG, Kostin S, Todor A, Schaper J, Sabbah HN. Expression of cytoskeletal, linkage and extracellular proteins in failing dog myocardium. Heart Fail Rev.. 2005;10:297–303.

    Article  PubMed  CAS  Google Scholar 

  34. Hynes RO. Fibronectins. Berlin, Germany: Springer; 1989.

    Google Scholar 

  35. Heling A, Zimmermann R, Kostin S, et al. Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res.. 2000;86:846–53.

    PubMed  CAS  Google Scholar 

  36. Kossmehl P, Schonberger J, Shakibaei M, et al. Increase of fibronectin and osteopontin in porcine hearts following ischemia reperfusion. J Mol Med.. 2005;83:626–37.

    Article  PubMed  CAS  Google Scholar 

  37. Rastogi S, Mishra S, Gupta RC, Sabbah HN. Reversal of maladaptive gene program in left ventricular myocardium of dogs with heart failure following long-term therapy with the acorn cardiac support device. Heart Fail Rev.. 2005;10:157–63.

    Article  PubMed  CAS  Google Scholar 

  38. Tsutsui H, Ishihara K, Cooper G. Cytoskeletal role for contractile dysfunction of hypertrophied myocardium. Science.. 1993;260:682–7.

    Article  PubMed  CAS  Google Scholar 

  39. Tsutsui H, Tagawa H, Kent RL, et al. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation.. 1994;90:533–55.

    PubMed  CAS  Google Scholar 

  40. Tagawa H, Koide M, Sato I, Cooper G. Cytoskeletal role in the contractile dysfunction of cardiomyocytes from hypertrophied and failing right ventricular myocardium. Proc Assoc Am Physicians.. 1996;108:218–29.

    PubMed  CAS  Google Scholar 

  41. Tagawa H, Rozich JD, Tsutsui H, et al. Basis of increased microtubules in pressure hypertrophied cardiocytes. Circulation.. 1996;93:1230–43.

    PubMed  CAS  Google Scholar 

  42. Tagawa H, Wang N, Narishige T, Ingber DE, Zile MR, Cooper G. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res.. 1997;80:281–9.

    PubMed  CAS  Google Scholar 

  43. Hein S, Kostin S, Heling A, Maeno Y, Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc Res.. 2000;45:273–8.

    Article  PubMed  CAS  Google Scholar 

  44. Wang X, Li F, Campbell SE, Gerdes M. Chronic pressure overload hypertrophy and failure in guinea pigs. J Mol Cell Cardiol.. 1999;31:319–31.

    Article  PubMed  CAS  Google Scholar 

  45. Lemler MS, Bies RD, Frid MG, et al. Myocyte cytoskeletal disorganization and right heart failure in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol.. 2000;279:H136–76.

    Google Scholar 

  46. Thomas CV, Coker MI, Zellner JL, Handy JR, Crumbley AJ, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation.. 1998;97:1708–15.

    PubMed  CAS  Google Scholar 

  47. Rastogi S, Gupta RC, Mishra S, Morita H, Tanhehco EJ, Sabbah HN. Long-term therapy with acorn cardiac support device normalizes gene expression of growth factors and gelatinases in dogs with heart failure. J Heart Lung Transplant.. 2005;10:1619–25.

    Article  Google Scholar 

  48. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res.. 2000;40:214–24.

    Article  Google Scholar 

  49. Lu L, Gunja-Smith Z, Woessner JF. Matrix metalloproteinases and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. Am J Physiol.. 2000;279:H601–09.

    CAS  Google Scholar 

  50. Tyagi SC, Kumar S, Cassatt S, Parker JL. Temporal expression of extracellular matrix metalloproteinases and tissue plasminogen activator in the development of collateral vessels in the canine model of coronary occlusion. Can J Physiol Pharmacol.. 1996;74:983–95.

    Article  PubMed  CAS  Google Scholar 

  51. Lindsey ML, Gannon J, Aikawa M, et al. Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation.. 2002;105:753–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by grants from the National Heart, Lung, and Blood Institute PO1 HL074237-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, S., Mishra, S., Zacà, V. et al. Effect of Long-term Monotherapy with the Aldosterone Receptor Blocker Eplerenone on Cytoskeletal Proteins and Matrix Metalloproteinases in Dogs with Heart Failure. Cardiovasc Drugs Ther 21, 415–422 (2007). https://doi.org/10.1007/s10557-007-6057-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-007-6057-8

Key words

Navigation