Skip to main content
Log in

Reversal of Maladaptive Gene Program in Left Ventricular Myocardium of Dogs with Heart Failure Following Long-Term Therapy with the Acorn Cardiac Support Device

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Progressive left ventricular (LV) dilation is a characteristic feature of heart failure and is associated with poor long-term prognosis. One of the characteristic changes that occur in the failing heart is a change in gene expression wherein fetal genes that were turned off shortly after birth are re-activated in heart failure and may play a key role in the progressive worsening of the heart failure state. This review discusses reversal of maladaptive gene expression in dogs with chronic heart failure treated long-term with the Acorn Cardiac Support Device (CSD); a passive mechanical device designed to prevent progressive LV enlargement and to restore normal LV chamber geometry. Studies in our laboratories have shown that, in addition to preventing LV dilation and improving LV ejection fraction, long-term therapy with the CSD reverses the maladaptive gene program observed in LV myocardium of dogs with heart failure. Therapy with the CSD was associated with up-regulated mRNA expression for α-myosin heavy chain and down-regulated mRNA expression of A- and B- type natriuretic peptides, cytokines and favorably modulated cytoskeletal proteins. These findings provide an explanation for mechanisms that may be partly responsible for the improvement in LV systolic and diastolic function seen in dogs with heart failure after long-term CSD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: Chemical screens to modulate genes. J Clin Invest 2005;115:3.

    Article  Google Scholar 

  2. Chien KR. Stress pathways and heart failure. Cell 1999;98:555–558.

    Article  PubMed  Google Scholar 

  3. Marks AR. A guide for the perplexed: Towards an understanding of the molecular basis of heart failure. Circulation 2003;107:1456–1459.

    Article  PubMed  Google Scholar 

  4. Molkentin JD, Dorn IG. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 2001;63:391–426.

    Article  PubMed  Google Scholar 

  5. Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 2000;86:386–390.

    PubMed  Google Scholar 

  6. Sabbah HN, Sharov VG, Gupta RC, et al. Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment. Circ Res 2003;93:1095–1101.

    Article  PubMed  Google Scholar 

  7. Rastogi S, Gupta RC, Mishra S, et al. Therapy with the acorn cardiac support device reduces mRNA expression of brain and atrial natriuretic peptides in left ventricular myocardium of dogs with heart failure (Abstract). J Am Coll Card 2002;39(Suppl. A):5.

    Article  Google Scholar 

  8. Rastogi S, Mishra S, Gupta RC, Imai M, Sabbah HN. Chronic therapy with the Acorn Cardiac Support Device reduces mRNA gene expression and protein levels of tumor necrosis factor -alpha and interleukin-6 in dogs with heart failure (Abstract). J Am Coll Cardiol 2005;45:137A.

    Article  Google Scholar 

  9. Rastogi S, Mishra S, Gupta RC, Habib O, Brewer R, Imai M, Sabbah HN. Chronic therapy with the Acorn Cardiac Support Device reduces mRNA gene expression of tubulin-alpha and -beta and increases mRNA gene expression of titin in dogs with heart failure (Abstract). Circulation 2003;108(IV):331.

    Article  PubMed  Google Scholar 

  10. Rastogi S, Gupta RC, Mishra S, et al. Long-term therapy with the Acorn Cardiac Support Device normalizes gene expression for alpha-myosin heavy chain in dogs with chronic heart failure (Abstract). Circulation 2002;106(II):384.

    Google Scholar 

  11. Sabbah HN. Effects of cardiac support device on reverse remodeling: Molecular, biochemical, and structural mechanisms. J Cardiac Fail 2004;10:S207–S214.

    Article  Google Scholar 

  12. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992;327:685–691.

    Google Scholar 

  13. Waagstein F, Caidahl K, Wallentin I, Bergh C-H, Hjalmarson A. Long-term-blockade in dilated cardiomyopathy: Effect of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–563.

    PubMed  Google Scholar 

  14. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH, for the Carvedilol Heart Failure Study Group. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1349–1355.

    Article  PubMed  Google Scholar 

  15. Batista RJV, Santos JLV, Takeshita N, et al. Partial left ventriculectomy to improve left ventricular function in end stage heart disease. J Cardiac Surg 1996;11:96–97.

    Google Scholar 

  16. Kass DA, Baughman KL, Pak PH, et al. Reverse remodeling from cardiomyoplasty in human heart failure. Circulation 1995;91:2314–2318.

    PubMed  Google Scholar 

  17. Bolling SF, Pagani FD, Deeb GM, et al. Intermediate term outcome of mitral reconstruction in cardiomyopathy. J Thorac Cardiovasc Surg 1997;115:381–386.

    Google Scholar 

  18. Dor V, Sabatier M, Di Donato M, et al. Late hemodynamic results after left ventricular patch repair associated with coronary grafting in patients with postinfarction akinetic or dyskinetic aneurysm of the left ventricle. J Thorac Cardiovasc Surg 1995;110:1291–1299.

    PubMed  Google Scholar 

  19. Chaudhry PA, Mishima T, Sharov VG, et al. Passive epicardial containment prevents ventricular remodeling in heart failure. Ann Thorac Surg 2000;70:1275–1280.

    Article  PubMed  Google Scholar 

  20. Nakao K, Minobe W, Roden R, et al. Myosin heavy chain gene expression in human heart failure. J Clin Invest 1997;100:2362–2370.

    PubMed  Google Scholar 

  21. Miyata S, Minobe W, Bristow MR, et al. Myosin heavy chain isoforms expression in the failing and nonfailing human heart. Circ Res 2000;86:386–390.

    PubMed  Google Scholar 

  22. Schier JJ, Aldelstein RS. Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults and patients with hypertrophic cardiomyopathy. J Clin Invest 1982;69:816–825.

    PubMed  Google Scholar 

  23. Gorza L, Mercadier JJ, Schwartz LE, et al. Myosin types in the human heart. Circ Res 1984;54:694–702.

    PubMed  Google Scholar 

  24. Sudoh T, Minamino N, Kangawa K, et al. C-type natriuretic peptide (CNP): A new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 1990;168:863–870.

    Article  PubMed  Google Scholar 

  25. Vollmar AM, Gerbes AL, Nemer M, et al. Detection of C-type natriuretic peptide (CNP) transcript in the rat heart and immune organs. Endocrinology 1993;132:1872–1874.

    Article  PubMed  Google Scholar 

  26. de Bold AJ. Atrial natriuretic factor: A hormone produced by the heart. Science 1985;230:767–770.

    PubMed  Google Scholar 

  27. Luchner A, Stevens TL, Borgeson DD, et al. Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Physiol Heart Circ Physiol 1998;274:H1684–H1689.

    Google Scholar 

  28. Awazu M, Ichikawa I. Biological significance of atrial natriuretic peptide in the kidney. Nephron 1993;63:1–14.

    PubMed  Google Scholar 

  29. Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure. Circulation 1993;88:1004–1009.

    PubMed  Google Scholar 

  30. Kohno M, Horio T, Yokokawa K, et al. Brain natriuretic peptide as a marker for hypertensive left ventricular hypertrophy: Changes during 1-year antihypertensive therapy with angiotensin-converting enzyme inhibitor. Am J Med 1995;98:257–265.

    Article  PubMed  Google Scholar 

  31. Takahashi T, Allen PD, Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Circ Res 1992;71:9–17.

    PubMed  Google Scholar 

  32. Rubattu S, Volpe M. The atrial natriuretic peptide: A changing view. J Hypertens 2001;19:1923–1931.

    Article  PubMed  Google Scholar 

  33. Hein S, Kostin S, Heling A, Maeno Y, Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc Res 2000;45:273–278.

    Article  PubMed  Google Scholar 

  34. Rastogi S, Mishra S, Gupta RC, et al. Chronic therapy with the Acorn Cardiac Support Device reduces mRNA gene expression of tubulin-alpha and -beta and increases mRNA gene expression of titin in dogs with heart failure (Abstract). Circulation 2003;108:IV-331.

    Google Scholar 

  35. Tsutsui H, Tagawa H, Kent RL, McCollam PL, Ishihara K, Nagatsu M, Cooper G, IV. Circulation 1994;90:533–555.

    PubMed  Google Scholar 

  36. Saavedra WF, Paolocci N, Mishima T, Suzuki G, Chaudhry PA, Anagnostopoulos P, Gupta RC, Tunin R, Sabbah HN, Kass DA. Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 1002;39:2069–2076.

    Article  Google Scholar 

  37. Mann DL. The role of inflammatory mediators in heart failure. Heart Failure Reviews 2001;6:69.

    Article  Google Scholar 

  38. Torre-Amione G, Kapadia S, Lee J, et al. Tumor necrosis factor-α and tumor necrosis receptors in the failing human heart. Circulation 1996;93:704–711.

    PubMed  Google Scholar 

  39. Bozkurt B, Torre-Amione G, Deswal A, Soran OZ, Whitmore J, Warren M, Mann DL. Regression of left ventricular remodeling in chronic heart failure after treatment with enbrel (Etanercept, p75 TNF receptor Fc fusion protein). Circulation 1999;100(I):105.

    Google Scholar 

  40. kishimoto T, Akira S, Narazaki M, Taga T. Interleukin family of cytokines and gp130. Blood 1995;86:1243–1254.

    PubMed  Google Scholar 

  41. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S. Circulating interleukin-6 in severe heart failure. Am J Cardiol 1997;79:1128–1131.

    Article  PubMed  Google Scholar 

  42. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM. Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1996;77:723–727.

    Article  PubMed  Google Scholar 

  43. Orus J, Roig E, Perez-Villa F, Pare C, et al. Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant 2000;19:419–425.

    Article  PubMed  Google Scholar 

  44. Wollert KC, Drexler H. The role of interleukin-6 in the failing heart. Heart Failure Reviews 2001;6:95–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, S., Mishra, S., Gupta, R.C. et al. Reversal of Maladaptive Gene Program in Left Ventricular Myocardium of Dogs with Heart Failure Following Long-Term Therapy with the Acorn Cardiac Support Device. Heart Fail Rev 10, 157–163 (2005). https://doi.org/10.1007/s10741-005-4643-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-005-4643-z

Keywords

Navigation