Skip to main content

Advertisement

Log in

Time-Domain Evaluation of Cyclosporine Interaction with Hemodynamic Variability in Rats

  • Basic Pharmacology
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

This study investigated the effects of chronic exposure of Wistar rats to the immunosuppressant drug cyclosporine on blood pressure, heart rate, and their variability and the role of sympathovagal balance in this interaction. The blood pressure variability was determined as the standard deviation of the mean arterial pressure (SDMAP). Two time-domain heart rate variability indices were employed, the standard deviation of beat-to-beat intervals (SDRR) and the root mean square of successive beat-to-beat differences in R-R interval durations (rMSSD). Subcutaneous cyclosporine administration (20 mg/kg/day) for 12 days had no effect on blood pressure or its variability index (SDMAP). In contrast, the average level of heart rate and its variability indices (SDRR and rMSSD) showed significant increases and decreases, respectively, in cyclosporine- compared with vehicle-treated rats. Vagal (atropine) or β -adrenergic (propranolol) blockade had no effect on blood pressure but elicited increases and decreases, respectively, in heart rate. Compared with control rats, cyclosporine-treated rats exhibited lesser tachycardic responses to atropine and greater bradycardic responses to propranolol, suggesting alterations of cardiac vagal (attenuation) and sympathetic (enhancement) activity by cyclosporine. Further, atropine reduced indices of heart rate variability (rMSSD and SDRR) in control rats, effects that were blunted by cyclosporine treatment. On the other hand, propranolol had no effect on heart rate variability in either cyclosporine-treated or control rats. These findings implicate vagally-mediated alterations in the cardiac sympathovagal balance in the cyclosporine-induced impairment of heart rate oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ori Z, Monir G, Weiss J, Sayhouni X, Singer DH. Heart rate variability: Frequency domain analysis. In: Kennedy HL, ed. Cardiology Clinics, Vol. 10, No. 3. Philadelphia: W.B. Saunders Co., 1992:499–533.

    Google Scholar 

  2. Japundzic-Zigon N. Physiological mechanisms in regulation of blood pressure fast frequency variations. Clin Exp Hypertens 1998;20:359–388.

    Article  PubMed  CAS  Google Scholar 

  3. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: A measure of cardiac autonomic tone. Am Heart J 1994;127:1376–1381.

    PubMed  CAS  Google Scholar 

  4. Huikuri HV, Jokinen V, Syvanne M, et al. Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1999;19:1979–1985.

    PubMed  CAS  Google Scholar 

  5. Zipes DP, Miyazaki T. The autonomic nervous system and the heart: Basis for understanding interactions and effects on arrhythmia development. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology From Cell to Bedside Philadelphia, PA: Saunders, 1990:312–330.

    Google Scholar 

  6. Sgoifo A, de Boer SF, Westenbroek C, et al. Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am J Physiol 1997;273:H1754–1760.

    PubMed  CAS  Google Scholar 

  7. Friedwald, VE, Spence DW. Sudden death associated with exercise: The risk-benefit issue. Am J Cardiol 1990;66:183–188.

    Google Scholar 

  8. Billman GE. Aerobic exercise conditioning: A nonpharmacological antiarrhythmic intervention. J Appl Physiol 2002;92:446–454.

    PubMed  Google Scholar 

  9. Mancia G, Parati G. Ambulatory blood pressure monitoring and organ damage. Hypertension 2000;36:894–900.

    CAS  PubMed  Google Scholar 

  10. Parati G, Ulian L, Santucciu C, Omboni S, Mancia G. Blood pressure variability, cardiovascular risk and antihypertensive treatment. J Hypertens 1995;13(suppl 4):S27–S34.

    CAS  Google Scholar 

  11. Chaouche-Teyara K, Lacolley P, Challande P, et al. Effects of clonidine and flesinoxan on blood pressure variability in conscious spontaneously hypertensive rats. J Cardiovasc Pharmacol 1997;30:241–244.

    PubMed  CAS  Google Scholar 

  12. Timio M, Venanzi S, Gentili S, Ronconi M, Del Re G, Del Vita M. Reversal of left ventricular hypertrophy after one-year treatment with clonidine: Relationship between echocardiographic findings, blood pressure, and urinary catecholamines. J Cardiovasc Pharmacol 1987;10 (Suppl 12):S142–S146.

    Article  PubMed  Google Scholar 

  13. Kovarik JM, Burtin P. Immunosuppressants in advanced clinical development for organ transplantation and selected autoimmune diseases. Expert Opin Emerg Drugs 2003;8:47–62.

    Article  CAS  PubMed  Google Scholar 

  14. Mason J. Pharmacology of cyclosporine (Sandimmune). VII. Pathophysiology and toxicology of cyclosporine in humans and animals. Pharmacol Rev 1990;41:423–434.

    PubMed  CAS  Google Scholar 

  15. Shulman H, Striker G, Deeg HJ, Kennedy M, Storb R, Thomas ED. Nephrotoxicity of cyclosporin A after allogeneic marrow transplantation: Glomerular thromboses and tubular injury. N Engl J Med 1981;305:1392–1395.

    Article  PubMed  CAS  Google Scholar 

  16. LoVecchio FA, Goltz HR. Atrial fibrillation following acute overdose with oral cyclosporine. Ann Pharmacother 2000;34:405.

    PubMed  CAS  Google Scholar 

  17. Semeniuk LM, Severson DL, Kryski AJ, Swirp SL, Molkentin JD, Duff HJ. Time-dependent systolic and diastolic function in mice overexpressing calcineurin. Am J Physiol Heart Circ Physiol 2003;284:H425–H430.

    PubMed  CAS  Google Scholar 

  18. Ko WJ, Lin FL, Wang SS, Chu SH. Hypomagnesia and arrhythmia corrected by replacing cyclosporine with FK506 in a heart transplant recipient. J Heart Lung Transplant 1997;16:980–982.

    PubMed  CAS  Google Scholar 

  19. Therapondos G, Flapan AD, Dollinger MM, Garden OJ, Plevris JN, Hayes PC. Cardiac function after orthotopic liver transplantation and the effects of immunosuppression: A prospective randomized trial comparing cyclosporin (Neoral) and tacrolimus. Liver Transpl 2002;8:690–700.

    PubMed  Google Scholar 

  20. Roberts CA, Stern DL, Radio SJ. Asymmetric cardiac hypertrophy at autopsy in patients who received FK506 (tacrolimus) or cyclosporine A after liver transplant. Transplantation 2002;74:817–821.

    PubMed  CAS  Google Scholar 

  21. Banijamali HS, ter Keurs MH, Paul LC, ter Keurs HE. Excitation-contraction coupling in rat heart: Influence of cyclosporin A. Cardiovasc Res 1993;27:1845–1854.

    Article  PubMed  CAS  Google Scholar 

  22. Wickenden AD, Kaprielian R, Kassiri Z, et al. The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc Res 1998;37:312–323.

    PubMed  CAS  Google Scholar 

  23. Gerhardt U, Riedasch M, Hohage H. Cyclosporine A modulates baroreceptor function in kidney transplant recipients. Int J Cardiol 1999;68:203–208.

    PubMed  CAS  Google Scholar 

  24. El-Mas MM, Afify EA, Omar AG, Sharabi FM. Cyclosporine adversely affects baroreflexes via inhibition of testosterone modulation of cardiac vagal control. J Pharmacol Exp Ther 2002;301:346–354.

    PubMed  CAS  Google Scholar 

  25. El-Mas MM, Afify EA, Omar AG, Sharabi FM. Cyclosporine attenuates the autonomic modulation of reflex chronotropic responses in conscious rats. Can J Physiol Pharmacol 2002;80:766–776.

    PubMed  CAS  Google Scholar 

  26. El-Mas MM, Abdel-Rahman AA. Role of aortic baroreceptors in ethanol-induced impairment of baroreflex control of heart rate in conscious rats. J Pharmacol Exp Ther 1992;262:157–165.

    PubMed  CAS  Google Scholar 

  27. El-Mas MM, Abdel-Rahman AA. Contrasting effects of urethane, ketamine, and thiopental anesthesia on ethanol-clonidine hemodynamic interaction. Alcohol Exp Clin Res 1997;21:19–27.

    CAS  Google Scholar 

  28. El-Mas MM. Facilitation of reflex bradycardia does not contribute to the enhanced hypotensive effect of clonidine in aortic barodenervated rats. J Cardiovasc Pharmacol 1998;31:869–875.

    PubMed  CAS  Google Scholar 

  29. Coleman TG. Arterial baroreflex control of heart rate in the conscious rat. Am J Physiol 1980;238:H515–H520.

    PubMed  CAS  Google Scholar 

  30. El-Mas MM, Afify EA, Mohy El-Din MM, Omar AG, Sharabi FM. Testosterone facilitates the baroreceptor control of reflex bradycardia: Role of cardiac sympathetic and parasympathetic components. J Cardiovasc Pharmacol 2001;38:754–763.

    PubMed  CAS  Google Scholar 

  31. El-Mas MM, Abdel-Rahman AA. Effects of chronic ethanol feeding on clonidine-evoked reductions in blood pressure, heart rate, and their variability: Time-domain analyses. J Pharmacol Exp Ther 2003;306:271–278.

    PubMed  CAS  Google Scholar 

  32. El-Mas MM, Abdel-Rahman AA. Effects of long-term ovariectomy and estrogen replacement on clonidine-evoked reductions in blood pressure and hemodynamic variability. J Cardiovasc Pharmacol 2004;43:607–615.

    PubMed  CAS  Google Scholar 

  33. El-Mas MM, Abdel-Rahman AA. Radiotelemetric evaluation of the hemodynamic effects of long-term ethanol in spontaneously hypertensive and Wistar-Kyoto rats. J Pharmacol Exp Ther 2000;292:944–951.

    PubMed  CAS  Google Scholar 

  34. Visser EK, van Reenen CG, van der Werf JT, et al. Heart rate and heart rate variability during a novel object test and a handling test in young horses. Physiol Behav 2002;76:289–296.

    PubMed  CAS  Google Scholar 

  35. Ryuzaki M, Stahl LK, Lyson T, Victor RG, Bishop VS. Sympathoexcitatory response to cyclosporin A and baroreflex resetting. Hypertension 1997;29:576–582.

    PubMed  CAS  Google Scholar 

  36. Moss NG, Powell SL, Falk RJ. Intravenous cyclosporine activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats. Proc Natl Acad Sci USA 1985;82:8222–8226.

    PubMed  CAS  Google Scholar 

  37. Scherrer U, Vissing SF, Morgan BJ, et al. Cyclosporine-induced sympathetic activation and hypertension after transplantation. N Engl J Med 1990;323:693–699.

    Article  PubMed  CAS  Google Scholar 

  38. Xue H, Bukoski RD, McCarron DA, Bennett MW. Induction of contraction in isolated rat aorta by cyclosporine. Transplantation 1987;43:715–718.

    PubMed  CAS  Google Scholar 

  39. Gerkens JF. Cyclosporine treatment of normal rats produces a rise in blood pressure and decreased renal vascular responses to nerve stimulation, vasoconstrictors and endothelium-dependent dilators. J Pharmacol Exp Ther 1989;250:1105–1112.

    PubMed  CAS  Google Scholar 

  40. Curtis JJ. Hypertension following kidney transplantation. Am J Kidney Dis 1994;23:471–475.

    PubMed  CAS  Google Scholar 

  41. Zhang W, Victor RG. Calcineurin inhibitors cause renal afferent activation in rats: A novel mechanism of cyclosporine-induced hypertension. Am J Hypertens 2000;13:999– 1004.

    PubMed  CAS  Google Scholar 

  42. Zhang W, Li JL, Hosaka M, et al. Cyclosporine A-induced hypertension involves synapsin in renal sensory nerve endings. Proc Natl Acad Sci USA 2000;97:9765–9770.

    PubMed  CAS  Google Scholar 

  43. Marcaida G, Kosenko E, Minana MD, Grisolia S, Felipo V. Glutamate induces a calcineurin-mediated dephosphorylation of Na+,K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 1996;66:99–104.

    Article  PubMed  CAS  Google Scholar 

  44. Kumada M, Terui N, Kuwaki T. Arterial baroreceptor reflex: Its central and peripheral neural mechanisms. Prog Neurobiol 1990;35:331–361.

    PubMed  CAS  Google Scholar 

  45. Hay M. Cyclosporine A modulation of Ca++ activated K+ channels in cardiac sensory afferent neurons. Brain Res 1998;786:243–247.

    PubMed  CAS  Google Scholar 

  46. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: Unique insights into cardiovascular regulation. Am J Physiol 1991;261:H1231–H1245.

    CAS  PubMed  Google Scholar 

  47. Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: Effects of autonomic blockers. J Auton Nerv Syst 1990;30:91–100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. El-Mas Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, A.G., El-Mas, M.M. Time-Domain Evaluation of Cyclosporine Interaction with Hemodynamic Variability in Rats. Cardiovasc Drugs Ther 18, 461–468 (2004). https://doi.org/10.1007/s10557-004-6223-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-004-6223-1

Key Words

Navigation