Skip to main content
Log in

Preserved autonomic heart rate modulation in chronic renal failure patients in response to hemodialysis and orthostatism

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The aim of this work was to measure the impact of active orthostatism and hemodialysis (HD) upon heart rate variability (HRV) in chronic renal failure (CRF) patients before and after HD.

Methods

Nineteen healthy subjects (age 27 ± 8 years old, 13 were female) and 19 unmedicated CRF patients with HD thrice per week (average HD vintage = 12 months, age 32 ± 9 years old, 11 were female) were included. Five-minute length HRV time series were obtained during supine position and orthostatism. Recordings from CRF patients were obtained before and after HD. Time domain and frequency domain HRV indexes were compared by analysis of variance. The correlation between each HRV index and change in sympathetic weighting induced by different maneuvers was tested by Kendall’s Tau correlation. A p value <0.05 was considered statistically significant.

Results

HRV indexes which are associated with sympathetic activity increased in response to orthostatism in the healthy group, e.g., low-frequency to high-frequency (LF/HF) ratio, Ln (LF/HF) = −0.3 ± 0.9 versus 0.9 ± 0.9. CRF patients before HD had higher sympathetic weighting than healthy participants, even in supine position, Ln (LF/HF) = 0.6 ± 1.0, but such a difference was accentuated during orthostatism, Ln (LF/HF) = 1.5 ± 1.0, and after HD: Ln (LF/HF) = 0.8 ± 1.3 (supine position) and 2.5 ± 2.1 (orthostatism). All HRV indexes were associated with increments in sympathetic weighting between maneuvers (Kendall´s correlations absolute values ≥0.24).

Conclusion

Unmedicated young CRF patients treated with hemodynamically stable maintenance HD showed preserved capacity of autonomic response (with gradual sympathetic increases) induced by cardiovascular challenges such as orthostatism and HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park J. Cardiovascular risk in chronic kidney disease: role of the sympathetic nervous system. Cardiol Res Pract. 2012;2012:319432.

    PubMed Central  PubMed  Google Scholar 

  2. Ranpuria R, Hall M, Chan CT, Unruh M. Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrol Dial Transplant. 2008;23:444–9.

    Article  PubMed  Google Scholar 

  3. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–2.

    Article  CAS  PubMed  Google Scholar 

  4. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  5. Paton JF, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Rev. 2005;49:555–65.

    Article  CAS  PubMed  Google Scholar 

  6. Carrasco-Sosa S, Gonzalez-Camarena R, Roman-Ramos R, Medina-Bañuelos V, Azpiroz-Leehan J. The effects of body position, controlled breathing and exercise on the heart rate variability parameters in healthy subjects. Arch Inst Cardiol Mex. 1999;69:511–25.

    CAS  PubMed  Google Scholar 

  7. Lerma C, Minzoni A, Infante O, José MV. A mathematical analysis for the cardiovascular control adaptations in chronic renal failure. Artif Organs. 2004;28:398–409.

    Article  PubMed  Google Scholar 

  8. London GM, Guerin AP, Marchais SJ, et al. Cardiac and arterial interactions in end-stage renal disease. Kidney Int. 1996;50:600–8.

    Article  CAS  PubMed  Google Scholar 

  9. Fukuta H, Hayano J, Ishihara S, et al. Prognostic value of heart rate variability in patients with end-stage renal disease on chronic haemodialysis. Nephrol Dial Transplant. 2003;18:318–25.

    Article  PubMed  Google Scholar 

  10. Chandra P, Sands RL, Gillespie BW, et al. Predictors of heart rate variability and its prognostic significance in chronic kidney disease. Nephrol Dial Transplant. 2012;27:700–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Eng J Med. 1992;327:1912–8.

    Article  Google Scholar 

  12. Rump LC, Amann K, Orth S, Ritz E. Sympathetic overactivity in renal disease: a window to understand progression and cardiovascular complications of uraemia? Nephrol Dial Transplant. 2000;15:1735–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rubinger D, Backenroth R, Sapoznikov D. Sympathetic nervous system function and dysfunction in chronic hemodialysis patients. Semin Dial. 2013;26:333–43.

    Article  PubMed  Google Scholar 

  14. Kurata C, Uehara A, Ishikawa A. Improvement of cardiac sympathetic innervation by renal transplantation. J Nucl Med. 2004;25:1114–20.

    Google Scholar 

  15. Richkham PP. Human experimentation. Code of ethics of the World Medical Association. Declaration of Helsinki. Br Med J. 1964;2:177.

    Article  Google Scholar 

  16. Charra B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial Int. 2007;11:21–31.

    Article  PubMed  Google Scholar 

  17. Infante O, Rodriguez G, Perez J, Espinoza L, Valenzuela F, Rojas M. Electrocardiographic terminal. Rev Mex Ing Biomed. 1988;9:87–95.

    Google Scholar 

  18. Lerma C, Infante O, Perez-Grovas H, José MV. A system for analysis of heart rate variability. Electro. 2000;22:63–7.

    Google Scholar 

  19. Infante O, Valenzuela F, Polo S. Algorithm that uses the second derivative to identify the QRS complex in real time. Rev Mex Ing Biomed. 1992;13:23–32.

    Google Scholar 

  20. Barnas MG, Boer WH, Koomas HA. Hemodynamic patterns and spectral analysis of heart rate variability during dialysis hypotension. J Am Soc Nephrol. 1999;10:2577–84.

    CAS  PubMed  Google Scholar 

  21. Hervé A. The Kendall rank correlation coefficient. In: Salkind N, editor. Encyclopedia of measurements and statistics. Thousand Oaks, CA: SAGE Publications; 2007. p. 1–7.

    Google Scholar 

  22. Hathaway DK, Cashion AK, Milstead EJ, et al. Autonomic dysregulation in patients awaiting kidney transplantation. Am J Kidney Dis. 1998;32:221–9.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson TG, Carr SJ. Cardiovascular autonomic dysfunction in uremia. Kidney Int. 2002;62:1921–32.

    Article  PubMed  Google Scholar 

  24. Vita G, Bellinghieri G, Trusso A, et al. Uremic autonomic neuropathy studied by spectral analysis of heart rate. Kidney Int. 1999;56:232–7.

    Article  CAS  PubMed  Google Scholar 

  25. Cavalcanti S, Severi S, Chiari L, et al. Autonomic nervous function during haemodialysis assessed by spectral analysis of heart-rate variability. Clin Sci. 1997;92:351–9.

    CAS  PubMed  Google Scholar 

  26. Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.

    CAS  PubMed  Google Scholar 

  27. Charra B, Calemard M, Laurent G. Importance of treatment time and blood pressure control in achieving long-term survival on dialysis. Am J Nephrol. 1996;16:35–44.

    Article  CAS  PubMed  Google Scholar 

  28. Routledge HC, Chowdhary S, Townend JN. Heart rate variability—a therapeutic target? J Clin Pharm Ther. 2002;27:85–92.

    Article  CAS  PubMed  Google Scholar 

  29. Ozkahya M, Ok E, Toz H, et al. Long-term survival rates in haemodialysis patients treated with strict volume control. Nephrol Dial Transplant. 2006;21:3506–13.

    Article  PubMed  Google Scholar 

  30. Tentori F. Focus on: physical exercise in hemodialysis patients. J Nephrol. 2008;21:808–12.

    PubMed  Google Scholar 

  31. Couto CI. Exercise training improves cardiovascular fitness in people receiving haemodialysis for chronic renal disease. J Physiother. 2012;58:130.

    Article  PubMed  Google Scholar 

  32. Mustata S, Chan C, Lai V, Miller JA. Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients. J Am Soc Nephrol. 2004;15:2713–8.

    Article  PubMed  Google Scholar 

  33. Coquet I, Mousson C, Rifle G, et al. Influence of ischemia on heart-rate variability in chronic hemodialysis patients. Ren Fail. 2005;27:7–12.

    PubMed  Google Scholar 

  34. McQuillan R, Trpeski L, Fenton S, Lok CE. Modifiable risk factors for early mortality on hemodialysis. Int J Nephrol. 2012;2012:435736.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tekce H, Kursat S, Bahadir CH, Aktas G. Effects of nutritional parameters on nocturnal blood pressure in patients undergoing hemodialysis. Ren Fail. 2013;35:946–50.

    Article  PubMed  Google Scholar 

  36. Cavalcanti S, Severi S, Enzmann G. Analysis of oscillatory components of short-term heart rate variability in hemodynamically stable and unstable patients during hemodialysis. Artif Organs. 1998;22:98–106.

    Article  CAS  PubMed  Google Scholar 

  37. Cavalcanti S, Belardinelli E. Modeling of cardiovascular variability using a differential delay equation. IEEE Trans Biomed Eng. 1996;43:982–9.

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez H, Infante O, Perez-Grovas H, Jose MV, Lerma C. Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: recurrence analysis approach. Med Eng Phys. 2013;35:178–87.

    Article  PubMed  Google Scholar 

  39. Chesterton LJ, Selby NM, Burton JO, Fialova J, Chan C, McIntyre CW. Categorization of the hemodynamic response to hemodialysis: the importance of baroreflex sensitivity. Hemodial Int. 2010;14:18–28.

    Article  PubMed  Google Scholar 

  40. Cavalcanti S, Chiari L, Severi S, Avanzolini G, Enzmann G, Lamberti C. Parametric analysis of heart rate variability during hemodialysis. Int J Biomed Comput. 1996;42:215–24.

    Article  CAS  PubMed  Google Scholar 

  41. Cavalcanti S, Cavani S, Santoro A. Role of short-term regulatory mechanisms on pressure response to hemodialysis-induced hypovolemia. Kidney Int. 2002;61:228–38.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank CONACyT for financial support, Grant No. 169489. MVJ was financially supported by PAPIIT-IN107112, UNAM, México.

Conflict of interest

All the authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Infante.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerma, C., González, H., Pérez-Grovas, H. et al. Preserved autonomic heart rate modulation in chronic renal failure patients in response to hemodialysis and orthostatism. Clin Exp Nephrol 19, 309–318 (2015). https://doi.org/10.1007/s10157-014-0990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0990-1

Keywords

Navigation