Skip to main content
Log in

Mathematical Modeling of High-Temperature Vaporization of Heterogeneous Water Drops

  • Published:
Chemical and Petroleum Engineering Aims and scope

Experimental data on high-temperature vaporization of heterogeneous water drops, obtained by high-speed video recording, and Ansys Fluent software package were used to develop a predictive mathematical model of heat and mass transfer. An assessment was made of the influence of the key process parameter, namely, the temperature of a gaseous medium ( Tg = 500 – 850 K), on the integral characteristics of vaporization of homogeneous drops of water and drops of aqueous suspension containing graphite inclusions. The dependencies of complete vaporization and disintegration (due to ebullition) time on the temperature of the gases are established. The numerical modeling and experimental data are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. Yu. Varaksin, Teplofiz. Vysok. Temp., 51, No. 3, 421–455 (2013).

    Google Scholar 

  2. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Drop Flows [in Russian], Izd. NGTU, Novosibirsk (2009).

  3. A. M. Kagan, A. S. Pushnov, M. G. Berengarten, et al., Khim. Neftegaz. Mashinostr., No. 7, 11–13 (2009).

  4. X. Zhou, S. P. D’Aniello, and N.-Z. Yu, Fire Safety J., 54, 36–48 (2012).

    Article  Google Scholar 

  5. O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, et al., Fire Safety J., 51, 1, 102–109 (2012).

    Article  CAS  Google Scholar 

  6. A. A. Salamov, Énergetik, No. 3, 16–18 (2012).

  7. N. P. Kopylov, A. L. Chibisov, A. L. Dushkin, and E. A. Kudryavtsev, Pozhar. Bezops., No. 4, 45–58 (2008).

  8. A. G. Vinogradov, Pozharovzryvobezopasnost, 23, No. 1, 45–56 (2014).

    Google Scholar 

  9. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Int. J. Thermal Sci., 88, 193–200 (2015).

    Article  Google Scholar 

  10. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys., No. 7, 959–967 (2014).

  11. I. S. Anufriev, G. V. Kuznetsov, M. V. Piskunov, et al., Pis’ma v ZhTF, 41, No. 16, 98–104 (2015).

    Google Scholar 

  12. M. V. Piskunov and P. A. Strizhak, Zh. Tekhn. Fiz., 86, No. 9, 24–31 (2016).

    Google Scholar 

  13. G. V. Kuznetsov, M. V. Piskunov, and P. A. Strizhak, Int. J. Heat and Mass Transfer, 92, 360–369 (2016).

    Article  CAS  Google Scholar 

  14. M. V. Piskunov, P. A. Strizhak, and A. A. Shcherbinina, Thermal Sci., 20, No. 2, 541–553 (2016).

    Article  Google Scholar 

  15. ANSYS FLUENT, Theory Guide (Release 15.0) Multiphase Flows, ANSYS Inc., 2013.

  16. L. A. Kozdoba, Methods of Solving Nonlinear Thermal Conduction Problems [in Russian], Nauka, Moscow (1975).

Download references

This work was carried out with the financial support of Russian Science Foundation grant 18-71-10002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vysokomornaya.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, Vol. 54, No. 12, pp. 20–23, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.V., Vysokomornaya, O.V. & Piskunov, M.V. Mathematical Modeling of High-Temperature Vaporization of Heterogeneous Water Drops. Chem Petrol Eng 54, 894–900 (2019). https://doi.org/10.1007/s10556-019-00569-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-019-00569-x

Keywords

Navigation