Skip to main content

Advertisement

Log in

Hydrogen Generation by Solid Polymer Electrolysis with Anodic Depolarization

  • Published:
Chemical and Petroleum Engineering Aims and scope

The feasibility of using anodic depolarization for water electrolysis in a system containing a solid polymer electrolyte is examined. Anodic depolarization in electrolysis helps reduce energy consumption by a half. Sulfur dioxide (sulfurous anhydride) and some organic compounds, methanol in particular, can be used as depolarizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. A. Grigor’ev and D. G. Bessarabov, “Solid polymer electrolysis with anodic depolarization for hydrogen generation,” Transp. Alternat. Topl., No. 6 (30), 69–71 (2012).

    Google Scholar 

  2. E. Lee and A. Brecher, US Patent 3888750, Electrocatalytic Decomposition of Water, publ. 02.10.1975.

  3. C. M. Hollabaugh, A. Bowman, and G. Melvin, US Patent 6244794, Hydrogen Production by the Decomposition of Water, publ. 07.31.1979.

  4. R. Schulten, D. Behr, and S. Friedrich, US Patent 4059496, Process for the Preparation of Sulfuric Acid from Sulfur Dioxide, publ. 09.20.1976.

  5. V. I. Kostin, V. N. Fateev, D. A. Bokach, et al., “Hydrogen and sulfuric acid production by electrolysis with anodic depolarization by sulfurous anhydride,” Khim. Neftegaz. Mashinostr., No. 3, 8–11 (2008).

    Google Scholar 

  6. A. V. Kozolii and V. I. Kostin, “Effect of pressure on the process of water electrolysis with anodic depolarization by sulfurous anhydride,” Elektrokhim. Energ., 10, No. 1, 34–37 (2010).

    CAS  Google Scholar 

  7. C. Lamy, E. M. Belgsir, and J-M Leger, “Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC),” J. Appl. Electrochem., 31, No. 7, 799–809 (2001).

    Article  CAS  Google Scholar 

  8. D. Cao and S. H. Bergens, “A direct 2-propanol polymer electrolyte fuel cell,” J. Power Sources, 124, 12–17 (2003).

    Article  CAS  Google Scholar 

  9. E. Peled, V. Livshits, and T. Duvdevani, “High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM),” J. Power Sources, 106, 245–248 (2002).

    Google Scholar 

  10. R. Parsons and T. Van der Noot, “Electrooxidation of methanol on noble metals surfaces,” J. Electroanal. Chem., 257, 9–15 (1988).

    Article  CAS  Google Scholar 

  11. P. S. Kauranen, E. Scou, and J. Munk, “Kinetics of methanol oxidation on carbon-supported Pt and Pt + Ru catalysts,” J. Electroanal. Chem., 404, 1–13 (1996).

    Article  Google Scholar 

  12. A. Hamnett, “Mechanism and electrocatalysis in the direct methanol fuel cell,” Catal. Today, No. 38, 445–457 (1997).

    Google Scholar 

  13. L. Carette, K. Friedrich, and U. Stimming, “Fuel cells – fundamentals and applications,” Fuel Cells, No. 1, –39 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grigor’ev.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 9, pp. 7–8, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostin, V.I., Grigor’ev, S.A., Bessarabov, D.G. et al. Hydrogen Generation by Solid Polymer Electrolysis with Anodic Depolarization. Chem Petrol Eng 49, 575–578 (2014). https://doi.org/10.1007/s10556-014-9797-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-014-9797-x

Keywords

Navigation