Skip to main content
Log in

System for hothouse heating during nighttime by solar radiation energy stored during daytime

  • Published:
Chemical and Petroleum Engineering Aims and scope

Patent search has been performed and the most efficient design of radiative heat exchanger usable in hothouse heating system has been chosen. A system has been built for stabilizing hothouse temperature during nighttime with natural heat carrier circulation. The loop for daytime operation of the system has been improved: for the first time cones that equalize the temperature field of the heat carrier have been placed at the storage tank inlet and outlet, and a mathematical model of daytime operation of the system has been built with due regard for the functioning of the cones. A procedure has been proposed for hour-by-hour determination of the total solar radiation incident on an inclined plane taking account of cloudiness, which helps find the optimum plane inclination angle. A procedure has been worked out to calculate the nighttime performance of the system, and rational heat stabilization parameters of the system, type of heat carrier, area of the radiative heat exchanger, volume of the storage tank, and dimensions of the hothouse have been determined. The theoretical data obtained by calculation of the system have been compared with the experimental data. The discrepancy between the experimental and calculated data was about 2–3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Vitskov, A. N. Kudryavtsev, and V. I. Pyndak, Russian Federation Patent 98113321/06: Solar Heat Collector, Published in Byull. Izobret, No. 24 (1999).

  2. A. B. Vardiashvili, V. D. Kim, and M. U. Muradov, Heat Engineering and Hydraulic Calculations and Examples of Low-Potential Solar Heating Systems for Mechanical Engineering Disciplines [in Russian], Nizami, Tashkent State Pedagogical Institute, Tashkent (1987).

    Google Scholar 

  3. J. A. Duffie and W. A. Beckman, Solar Energy Thermal Processes, Wiley, New York (1974); translated from English and published by Mir, Moscow (1977).

    Google Scholar 

  4. S. I. Sivkov, Methods for Calculation of Solar Radiation Characteristics [in Russian], Gidrometeoizdat, Leningrad (1968).

    Google Scholar 

  5. L. T. Matveev, A Course in General Meteorology: Physics of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1984).

    Google Scholar 

  6. V. A. Turulov, “Calculation model of unsteady heat regime of premises exposed to solar radiation,” Geliotekh., No. 5 (1985).

  7. D. V. Samoilov, Russian Federation Patent 60186 for Useful Model: Solar Installation.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 9, pp. 12–15, September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilov, D.V. System for hothouse heating during nighttime by solar radiation energy stored during daytime. Chem Petrol Eng 44, 503–509 (2008). https://doi.org/10.1007/s10556-008-9091-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-008-9091-x

Keywords

Navigation