Skip to main content

Performance Analysis of a Solar Water Heater for Space Heating in Residential and Commercial Buildings

  • Conference paper
  • First Online:
Recent Advances in Electrical Engineering, Electronics and Energy (CIT 2020)

Abstract

This research aims to analyze the performance of a solar water heater for space heating in residential and commercial buildings in the city of Quito in Ecuador. The collector system is environmentally friendly since during its operation no greenhouse gases are generated, being these the main causes of global warming produced by the burning of fossil fuels. One of the advantages of this innovation is that it is easy to install and transport. It can be installed outside apartment buildings and homes as if they were windows in the building itself, and its location allows the collector to be kept clean, improving the heating performance of the heat transfer fluid and offering a versatile sustainable building concept that reduces energy consumption. Carrying out tests under different meteorological conditions, the efficiency calculation of the solar air collector was developed, obtaining an average value of 59.09% with an acceptable collector performance, achieving an average useful heat of 3807.65 W and an output temperature of around 34.6 to 94 °C. These important data were obtained through methodologies of: thermal analysis in the collector, energy balances in each section and definition of mathematical models. This efficiency achieved offers good perspectives in the application of this type of technologies that contribute to the use of alternative or renewable energies, since the solar resource can be used to cover the energy demand at low costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( {\rm{A}}_{\rm{col}} \) :

Collector area

\( {\rm{A}}_{\rm{cv}} \) :

Glass Cover Area

\( {\rm{A}}_{\rm{p}} \) :

Plate area

\( {\rm{F}}_{\rm{r}} \) :

Heat Removal Factor

\( BEC\frac{dTc}{dt} \) :

Energy that is accumulated in the solar thermal collector

\( {\rm{h}}_ 1 \) :

Heat Transfer Coefficient

\( {\rm{h}}_ 2 \) :

Heat exchange coefficient

\( {\rm{h}}_ 3 \) :

Heat transfer coefficient between the indoor air and cover

\( {\rm{h}}_ 4 \) :

Heat transfer coefficient for radiation between plate and cover (glass)

\( {\rm{h}}_ 5 \) :

Heat transfer coefficient by natural convection between the indoor air and the plate

\( {\rm{h}}_ 6 \) :

Convection heat transfer coefficient between the insulation and the outside air

ṁ:

Mass flow

\( {\rm{Q}}_ 1 \) :

Heat radiated by the absorber plate

\( {\rm{Q}}_ 2 \) :

Hot air convection heat

\( {\rm{Q}}_ 3 \) :

Convection heat to the outside air Q4 Heat from radiation into outer space Q5 Heat delivered to indoor air

\( {\rm{Q}}_ 4 \) :

Heat from radiation into outer space

\( {\rm{Q}}_ 5 \) :

Heat delivered to indoor air

\( {\rm{Q}}_ 6 \) :

Heat that is lost to the environment through insulation of the collector bottom

\( {\rm{Q}}_ 7 \) :

Heat delivered by radiation to the collector cover

\( Q_u \) :

Useful heat

S:

Solar radiation absorbed per unit area

\( {\rm{T}}_{\rm{pm}} \) :

Average plate temperature

\( {\rm{T}}_{\rm{a}} \) :

Room temperature

\( {\rm{T}}_{\rm{o}} \) :

Outlet fluid temperature

\( {\rm{T}}_{\rm{i}} \) :

Fluid temperature at inlet

\( {\rm{T}}_{\rm{m}} \) :

Average temperature between Tp and Ti

\( {\rm{T}}_{\rm{ai}} \) :

Indoor air temperature

\( {\rm{T}}_{\rm{aex}} \) :

Outside air temperature

\( {\rm{T}}_{\rm{sky}} \) :

Sky Dome Temperature

\( {\rm{T}}_{\rm{aes}} \) :

Outside air temperature through insulation

\( \rm{\tau }_{\rm{cv}} \) :

Glass Transmittance

\( {\rm{U}}_{\rm{L}} \) :

Overall thermal loss coefficient of the collector

\( F_r \) :

Heat Removal Factor

\(\eta \) :

Optical efficiency of the collector

References

  1. Ferrer, J.M.I., Salas, J.M.: Dimensionado de un sistema térmico solar mediante simulación y su validación energética. Ingeniería Energética, vol. XXXIV, no. 1, pp. 56–65, January 2013

    Google Scholar 

  2. Victoria Cardozo, J.D.F.F.: Diseño y construcción de un calentador solar didáctico. Revista de la Sociedad Colombiana de Física, vol. 37, no. 2, pp. 338–348 (2005)

    Google Scholar 

  3. Nandwani, S.S.: Energía Solar - Conceptos básicos y su utilización. Universidad Nacional, Heredia, Costa Rica, p. 26, June 2005

    Google Scholar 

  4. Quiñonez, J., Hernández, A., Larsen, S.F.:Evaluación termoenergética de un colector solar calentador de aire de doble paso en contracorriente diseñado para la calefacción de edificios. Avances en Energías Renovables y Medio Ambiente, vol. 16, pp. 55–62 (2012)

    Google Scholar 

  5. Gallegos, H.G., Righini, R.: Ángulo Óptimo para planos colectores de Energía Solar integrados a Edificios. Avances en Energías Renovables y Medio Ambiente, vol. 16, no. 31, p. 7, October 2012

    Google Scholar 

  6. Giraldo, J., Arango, J.P.: Proceso de optimización en el diseño de sistema de calefacción solar pasivo, Revista Técnica “energía”, vol. 16, no. II, pp. 100–110, Enero 2020

    Google Scholar 

  7. Mohamad, A.: High efficiency solar air heater. Solar Energy 60(2), 71–76 (1997)

    Google Scholar 

  8. Pottler, K., Sippel, C.M., Beck, A., Fricke, J.: Optimized finned absorber geometries for solar air heating collectors. Solar Energy 67(1–3), 35–52 (1999)

    Google Scholar 

  9. Ammari, H.D.: A mathematical model of thermal performance of a solar air heater with slats. Renew. Energy 28(10), 1597–1615 (2003)

    Google Scholar 

  10. Kutscher, C.F., Christensen, C.B., Barker, G.M.: Unglazed transpired solar collectors: heat loss theory. J. Solar Energy Eng. 115(3), 182–188 (1993)

    Google Scholar 

  11. Kutscher, C.F.: Heat exchange effectiveness and pressure drop for air flow through perforated plates with and without crosswind. J. Heat Transfer 116(2), 391–399 (1994)

    Google Scholar 

  12. Ramani, B., Gupta, A.V.S., Kumar, R.: Performance of a double pass solar air collector. Solar Energy 84(11), 1929–1937 (2010)

    Google Scholar 

  13. González, S.M., Larsen, S.F., Hernandez, A.: Simulación del comportamiento térmico de un colector solar de aire de doble flujo mediante el software SIMUSOL. In: Comunicaciones del XXXV Congreso de ASADES, Rosario, Santa Fe, October 2019

    Google Scholar 

  14. Lammardo, A., Baritto, M.: Modelo matemático del comportamiento térmico de un colector solar de placas planas inclinadas para calentamiento de aire, Revista Ingeniería UC, vol. 17, no. 3, pp. 19–27, December 2010

    Google Scholar 

  15. Zhang, D., Li, J., Gao, Z., Wang, L., Nan, J.: Thermal performance investigation of modified flat plate solar collector with dual-function. Appl. Therm. Eng. 108, 1126–1135 (2016)

    Google Scholar 

  16. Othman, M.Y., Hamid, S.A., Tabook, M.A.S., Sopian, K., Roslan, M.H., Ibarahim, Z.: Performance analysis of PV/T Combi with water and air heating system: an experimental study. Renew. Energy 86, 716–722 (2016)

    Google Scholar 

  17. Nematollahi, O., Alamdari, P., Assari, M.R.: Experimental investigation of a dual purpose solar heating system. Energy Convers. Manag. 78, 359–366 (2014)

    Google Scholar 

  18. Fauroux, L.E., Jagër, M.: Diseño y Análisis de Colectores Solares Planos. In: Memorias del COINI 2013 UTN FRSR (2013)

    Google Scholar 

  19. Koulibaly, A., Bayón, J.J.G.: Modelación de un colector solar para calentamiento de aire. Ingeniería Energética 36(3), 292–302 (2015)

    Google Scholar 

  20. Quiñonez, J., Hernández, A.: Evaluación y Simulación Computacional de un Modelo físico-matemático el Colector Solar Calentador de Aire de Doble paso en contracorriente diseñado para la calefaccion de Edificios. XXXVI Reunión de Trabajo de la Asociación Argentina de Energías Renovables y Medio, vol. 1, pp. 123–130, October 2013

    Google Scholar 

  21. Fauroux, L.E., Diaz, D.O., Blanco, G.E., Degaetani, O.J.: Modelado, y análisis económico de colectores solares planos,” Revista Digital de Departamento de Ingeniería e Investigaciones Tecnológicas de la Universidad Nacional de la Matanza, vol. 1, no. 1, p. 14, May 2016

    Google Scholar 

  22. Gómez, A.E.Á., Fandiño, J.M.M., Sarmiento, J.F.B.: Evaluación energética de un colector solar de placa plana de doble cubierta, Ingeniería y Desarrollo, no. 27, pp. 93– 112, January 2010

    Google Scholar 

  23. Hernández, A., Salvo, N., Fernández, C., Suloy, H.: Diseño y evaluación térmica de un colector solar calentador de aire de placa perforada para calefacción de edificios. Avances en Energías Renovables y Medio Ambiente, vol. 12, p. 133 (2008)

    Google Scholar 

  24. Hernández, A., Fernández, C., Salvo, N., Suligoy, H.: Diseño, construcción y primeros ensayos de un colector solar calentador de aire de tipo loop convectivo para el calentamiento de edificios. Avances en Energías Renovables y Medio Ambiente, vol. 11, pp. 75–82 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Faculty of Mechanics of SEK International University with the project P041819 Parque de Energias Renovables, for providing the necessary conditions for the experimental process. The Instituto de Investigación Geológico y Energético (IIGE) and the Japan International Cooperation Agency (JICA) are also thanked for the donation of the solar collector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Martínez-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arguello Bravo, D.A., Martínez-Gómez, J., Urresta Suárez, E.F., Salazar Loor, D.R., Guerrón, G. (2021). Performance Analysis of a Solar Water Heater for Space Heating in Residential and Commercial Buildings. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds) Recent Advances in Electrical Engineering, Electronics and Energy. CIT 2020. Lecture Notes in Electrical Engineering, vol 763. Springer, Cham. https://doi.org/10.1007/978-3-030-72212-8_1

Download citation

Publish with us

Policies and ethics