Skip to main content

Advertisement

Log in

The roles of PD-L1 in the various stages of tumor metastasis

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The interaction between tumor programmed death ligand 1 (PD-L1) and T-cell programmed cell death 1 (PD-1) has long been acknowledged as a mechanism for evading immune surveillance. Recent studies, however, have unveiled a more nuanced role of tumor-intrinsic PD-L1 in reprograming tumoral phenotypes. Preclinical models emphasize the synchronized effects of both intracellular and extracellular PD-L1 in promoting metastasis, with intricate interactions with the immune system. This review aims to summarize recent findings to elucidate the spatiotemporal heterogeneity of PD-L1 expression and the pro-metastatic roles of PD-L1 in the entire process of tumor metastasis. For example, PD-L1 regulates the epithelial-to-mesenchymal transition (EMT) process, facilitates the survival of circulating tumor cells, and induces the formation of immunosuppressive environments at pre-metastatic niches and metastatic sites. And the complexed and dynamic regulation process of PD-L1 for tumor metastasis is related to the spatiotemporal heterogeneity of PD-L1 expression and functions from tumor primary sites to various metastatic sites. This review extends the current understandings for the roles of PD-L1 in mediating tumor metastasis and provides new insights into therapeutic decisions in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Chen, L., & Han, X. (2015). Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation, 125(9), 3384–3391. https://doi.org/10.1172/JCI80011

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pauken, K. E., & Wherry, E. J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 36(4), 265–276. https://doi.org/10.1016/j.it.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kornepati, A. V. R., Vadlamudi, R. K., & Curiel, T. J. (2022). Programmed death ligand 1 signals in cancer cells. Nature Reviews. Cancer, 22(3), 174–189. https://doi.org/10.1038/s41568-021-00431-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanks, B. A. (2022). The “Inside” Story on Tumor-Expressed PD-L1. Cancer Research, 82(11), 2069–2071. https://doi.org/10.1158/0008-5472.CAN-22-1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kornepati, A. V. R., Boyd, J. T., Murray, C. E., Saifetiarova, J., de la Peña Avalos, B., Rogers, C. M., et al. (2022). Tumor Intrinsic PD-L1 Promotes DNA Repair in Distinct Cancers and Suppresses PARP Inhibitor-Induced Synthetic Lethality. Cancer Research, 82(11), 2156–2170. https://doi.org/10.1158/0008-5472.CAN-21-2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tu, X., Qin, B., Zhang, Y., Zhang, C., Kahila, M., Nowsheen, S., et al. (2019). PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radiation or Chemotherapy. Molecular Cell, 74(6), 1215–1226.e4. https://doi.org/10.1016/j.molcel.2019.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark, C. A., Gupta, H. B., Sareddy, G., Pandeswara, S., Lao, S., Yuan, B., et al. (2016). Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Research, 76(23), 6964–6974. https://doi.org/10.1158/0008-5472.CAN-16-0258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, C.-H., Qiu, J., O’Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., et al. (2015). Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 162(6), 1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alsuliman, A., Colak, D., Al-Harazi, O., Fitwi, H., Tulbah, A., Al-Tweigeri, T., et al. (2015). Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in claudin-low breast cancer cells. Molecular Cancer, 14, 149. https://doi.org/10.1186/s12943-015-0421-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, C., Li, S., Xue, J., Qi, M., Liu, X., Huang, Y., et al. (2021). PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer. JCI Insight, 6(8), 131458. https://doi.org/10.1172/jci.insight.131458

    Article  PubMed  Google Scholar 

  11. Nieto, C., Miller, B., Alzofon, N., Chimed, T., Himes, J., Joshi, M., et al. (2023). The PD-L1 interactome demonstrates bidirectional signaling coordinating immune suppression and cancer progression in HNSCC. Journal of the National Cancer Institute, djad126. https://doi.org/10.1093/jnci/djad126

  12. Xu, Y., Poggio, M., Jin, H. Y., Shi, Z., Forester, C. M., Wang, Y., et al. (2019). Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nature Medicine, 25(2), 301–311. https://doi.org/10.1038/s41591-018-0321-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y.-H., Byers, L. A., et al. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature Communications, 5, 5241. https://doi.org/10.1038/ncomms6241

    Article  CAS  PubMed  Google Scholar 

  14. Xie, M., Lin, Z., Ji, X., Luo, X., Zhang, Z., Sun, M., et al. (2023). FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2. Journal of Hepatology, 79(1), 109–125. https://doi.org/10.1016/j.jhep.2023.02.036

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh, S., Nataraj, N. B., Noronha, A., Patkar, S., Sekar, A., Mukherjee, S., et al. (2021). PD-L1 recruits phospholipase C and enhances tumorigenicity of lung tumors harboring mutant forms of EGFR. Cell Reports, 35(8), 109181. https://doi.org/10.1016/j.celrep.2021.109181

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, Y., & Zhan, H. (2020). Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Letters, 468, 72–81. https://doi.org/10.1016/j.canlet.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  17. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.-J., Rutkowski, P., Lao, C. D., et al. (2019). Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 381(16), 1535–1546. https://doi.org/10.1056/NEJMoa1910836

    Article  CAS  PubMed  Google Scholar 

  18. Schmid, P., Cortes, J., Pusztai, L., McArthur, H., Kümmel, S., Bergh, J., et al. (2020). Pembrolizumab for Early Triple-Negative Breast Cancer. The New England Journal of Medicine, 382(9), 810–821. https://doi.org/10.1056/NEJMoa1910549

    Article  CAS  PubMed  Google Scholar 

  19. Forde, P. M., Chaft, J. E., Smith, K. N., Anagnostou, V., Cottrell, T. R., Hellmann, M. D., et al. (2018). Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. The New England Journal of Medicine, 378(21), 1976–1986. https://doi.org/10.1056/NEJMoa1716078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cercek, A., Roxburgh, C. S. D., Strombom, P., Smith, J. J., Temple, L. K. F., Nash, G. M., et al. (2018). Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA oncology, 4(6), e180071. https://doi.org/10.1001/jamaoncol.2018.0071

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eggermont, A. M. M., Blank, C. U., Mandalà, M., Long, G. V., Atkinson, V. G., Dalle, S., et al. (2021). Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. The Lancet. Oncology, 22(5), 643–654. https://doi.org/10.1016/S1470-2045(21)00065-6

    Article  CAS  PubMed  Google Scholar 

  22. Gerstberger, S., Jiang, Q., & Ganesh, K. (2023). Metastasis. Cell, 186(8), 1564–1579. https://doi.org/10.1016/j.cell.2023.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou, Y., Hu, X., Zheng, S., Yang, A., Li, X., Tang, H., et al. (2021). Discordance of immunotherapy response predictive biomarkers between primary lesions and paired metastases in tumours: A systematic review and meta-analysis. EBioMedicine, 63, 103137. https://doi.org/10.1016/j.ebiom.2020.103137

    Article  CAS  PubMed  Google Scholar 

  24. Torborg, S. R., Li, Z., Chan, J. E., & Tammela, T. (2022). Cellular and molecular mechanisms of plasticity in cancer. Trends in Cancer, 8(9), 735–746. https://doi.org/10.1016/j.trecan.2022.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez-González, A., Bévant, K., & Blanpain, C. (2023). Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nature Cancer, 4(8), 1063–1082. https://doi.org/10.1038/s43018-023-00595-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular Plasticity in Cancer. Cancer Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.CD-19-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  28. Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews. Clinical Oncology, 14(10), 611–629. https://doi.org/10.1038/nrclinonc.2017.44

    Article  PubMed  PubMed Central  Google Scholar 

  29. Del Pozo Martin, Y., Park, D., Ramachandran, A., Ombrato, L., Calvo, F., Chakravarty, P., et al. (2015). Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Reports, 13(11), 2456–2469. https://doi.org/10.1016/j.celrep.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  30. Liu, M., Wang, R., Sun, X., Liu, Y., Wang, Z., Yan, J., et al. (2020). Prognostic significance of PD-L1 expression on cell-surface vimentin-positive circulating tumor cells in gastric cancer patients. Molecular Oncology, 14(4), 865–881. https://doi.org/10.1002/1878-0261.12643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, S., Koh, J., Kim, M.-Y., Kwon, D., Go, H., Kim, Y. A., et al. (2016). PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Human Pathology, 58, 7–14. https://doi.org/10.1016/j.humpath.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Lou, Y., Diao, L., Cuentas, E. R. P., Denning, W. L., Chen, L., Fan, Y. H., et al. (2016). Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(14), 3630–3642. https://doi.org/10.1158/1078-0432.CCR-15-1434

    Article  CAS  PubMed  Google Scholar 

  33. Qiu, X. Y., Hu, D. X., Chen, W.-Q., Chen, R. Q., Qian, S. R., Li, C. Y., et al. (2018). PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochimica Et Biophysica Acta. Molecular Basis of Disease, 1864(5 Pt A), 1754–1769. https://doi.org/10.1016/j.bbadis.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  34. Yu, W., Hua, Y., Qiu, H., Hao, J., Zou, K., Li, Z., et al. (2020). PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death & Disease, 11(7), 506. https://doi.org/10.1038/s41419-020-2701-z

    Article  CAS  Google Scholar 

  35. Wang, S., Li, J., Xie, J., Liu, F., Duan, Y., Wu, Y., et al. (2018). Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene, 37(30), 4164–4180. https://doi.org/10.1038/s41388-018-0252-x

    Article  CAS  PubMed  Google Scholar 

  36. Tsutsumi, S., Saeki, H., Nakashima, Y., Ito, S., Oki, E., Morita, M., et al. (2017). Programmed death-ligand 1 expression at tumor invasive front is associated with epithelial-mesenchymal transition and poor prognosis in esophageal squamous cell carcinoma. Cancer Science, 108(6), 1119–1127. https://doi.org/10.1111/cas.13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, X., Peng, H., Liu, P., Fu, X., Wang, N., & Zhang, D. (2023). Programmed death ligand 1 regulates epithelial-mesenchymal transition and cancer stem cell phenotypes in hepatocellular carcinoma through the serum and glucocorticoid kinase 2/β-catenin signaling pathway. Cancer Science, 114(6), 2265–2276. https://doi.org/10.1111/cas.15753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fei, Z., Deng, Z., Zhou, L., Li, K., Xia, X., & Xie, R. (2019). PD-L1 Induces Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma Cells Through Activation of the PI3K/AKT Pathway. Oncology Research, 27(7), 801–807. https://doi.org/10.3727/096504018X15446984186056

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishaque, N., Abba, M. L., Hauser, C., Patil, N., Paramasivam, N., Huebschmann, D., et al. (2018). Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nature Communications, 9(1), 4782. https://doi.org/10.1038/s41467-018-07041-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui, B., Chen, J., Luo, M., Liu, Y., Chen, H., Lü, D., et al. (2021). PKD3 promotes metastasis and growth of oral squamous cell carcinoma through positive feedback regulation with PD-L1 and activation of ERK-STAT1/3-EMT signalling. International Journal of Oral Science, 13(1), 8. https://doi.org/10.1038/s41368-021-00112-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noman, M. Z., Janji, B., Abdou, A., Hasmim, M., Terry, S., Tan, T. Z., et al. (2017). The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology, 6(1), e1263412. https://doi.org/10.1080/2162402X.2016.1263412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cha, J.-H., Chan, L.-C., Li, C.-W., Hsu, J. L., & Hung, M.-C. (2019). Mechanisms Controlling PD-L1 Expression in Cancer. Molecular Cell, 76(3), 359–370. https://doi.org/10.1016/j.molcel.2019.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei, Y., Zhao, Q., Gao, Z., Lao, X.-M., Lin, W.-M., Chen, D.-P., et al. (2019). The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. The Journal of Clinical Investigation, 129(8), 3347–3360. https://doi.org/10.1172/JCI127726

    Article  PubMed  PubMed Central  Google Scholar 

  44. Augustin, R. C., Newman, S., Li, A., Joy, M., Lyons, M., Pham, M. P., et al. (2023). Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. Journal for Immunotherapy of Cancer, 11(10), e007567. https://doi.org/10.1136/jitc-2023-007567

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moutafi, M. K., Tao, W., Huang, R., Haberberger, J., Alexander, B., Ramkissoon, S., et al. (2021). Comparison of programmed death-ligand 1 protein expression between primary and metastatic lesions in patients with lung cancer. Journal for Immunotherapy of Cancer, 9(4), e002230. https://doi.org/10.1136/jitc-2020-002230

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoon, H. H., Jin, Z., Kour, O., Kankeu Fonkoua, L. A., Shitara, K., Gibson, M. K., et al. (2022). Association of PD-L1 Expression and Other Variables With Benefit From Immune Checkpoint Inhibition in Advanced Gastroesophageal Cancer: Systematic Review and Meta-analysis of 17 Phase 3 Randomized Clinical Trials. JAMA Oncology, 8(10), 1456–1465. https://doi.org/10.1001/jamaoncol.2022.3707

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reticker-Flynn, N. E., Zhang, W., Belk, J. A., Basto, P. A., Escalante, N. K., Pilarowski, G. O. W., et al. (2022). Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell, 185(11), 1924–1942.e23. https://doi.org/10.1016/j.cell.2022.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleffel, S., Posch, C., Barthel, S. R., Mueller, H., Schlapbach, C., Guenova, E., et al. (2015). Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell, 162(6), 1242–1256. https://doi.org/10.1016/j.cell.2015.08.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, R.-Y., Kong, P.-F., Xia, L.-P., Huang, Y., Li, Z.-L., Tang, Y.-Y., et al. (2019). Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(14), 4530–4541. https://doi.org/10.1158/1078-0432.CCR-18-2840

    Article  CAS  PubMed  Google Scholar 

  50. Klement, J. D., Redd, P. S., Lu, C., Merting, A. D., Poschel, D. B., Yang, D., et al. (2023). Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell, 41(3), 620–636.e9. https://doi.org/10.1016/j.ccell.2023.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, C.-Q., Xu, J., Zhou, Z.-G., Jin, L.-L., Yu, X.-J., Xiao, G., et al. (2018). Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. British Journal of Cancer, 119(1), 80–88. https://doi.org/10.1038/s41416-018-0144-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Noguchi, T., Ward, J. P., Gubin, M. M., Arthur, C. D., Lee, S. H., Hundal, J., et al. (2017). Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunology Research, 5(2), 106–117. https://doi.org/10.1158/2326-6066.CIR-16-0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petty, A. J., Dai, R., Lapalombella, R., Baiocchi, R. A., Benson, D. M., Li, Z., et al. (2021). Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight, 6(6), 146707. https://doi.org/10.1172/jci.insight.146707

    Article  PubMed  Google Scholar 

  54. Oh, S. A., Wu, D.-C., Cheung, J., Navarro, A., Xiong, H., Cubas, R., et al. (2020). PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature Cancer, 1(7), 681–691. https://doi.org/10.1038/s43018-020-0075-x

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Y., Velez-Delgado, A., Mathew, E., Li, D., Mendez, F. M., Flannagan, K., et al. (2017). Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut, 66(1), 124–136. https://doi.org/10.1136/gutjnl-2016-312078

    Article  CAS  PubMed  Google Scholar 

  56. Kuang, D.-M., Zhao, Q., Peng, C., Xu, J., Zhang, J.-P., Wu, C., & Zheng, L. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. The Journal of Experimental Medicine, 206(6), 1327–1337. https://doi.org/10.1084/jem.20082173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazel, M., Jacot, W., Pantel, K., Bartkowiak, K., Topart, D., Cayrefourcq, L., et al. (2015). Frequent expression of PD-L1 on circulating breast cancer cells. Molecular Oncology, 9(9), 1773–1782. https://doi.org/10.1016/j.molonc.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ilié, M., Szafer-Glusman, E., Hofman, V., Chamorey, E., Lalvée, S., Selva, E., et al. (2018). Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small-cell lung cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 29(1), 193–199. https://doi.org/10.1093/annonc/mdx636

    Article  PubMed  Google Scholar 

  59. Dall’Olio, F. G., Gelsomino, F., Conci, N., Marcolin, L., De Giglio, A., Grilli, G., et al. (2021). PD-L1 Expression in Circulating Tumor Cells as a Promising Prognostic Biomarker in Advanced Non-small-cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clinical Lung Cancer, 22(5), 423–431. https://doi.org/10.1016/j.cllc.2021.03.005

    Article  CAS  PubMed  Google Scholar 

  60. Jacot, W., Mazel, M., Mollevi, C., Pouderoux, S., D’Hondt, V., Cayrefourcq, L., et al. (2020). Clinical Correlations of Programmed Cell Death Ligand 1 Status in Liquid and Standard Biopsies in Breast Cancer. Clinical Chemistry, 66(8), 1093–1101. https://doi.org/10.1093/clinchem/hvaa121

    Article  PubMed  Google Scholar 

  61. Bergmann, S., Coym, A., Ott, L., Soave, A., Rink, M., Janning, M., et al. (2020). Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma (UC). Oncoimmunology, 9(1), 1738798. https://doi.org/10.1080/2162402X.2020.1738798

    Article  PubMed  PubMed Central  Google Scholar 

  62. Winograd, P., Hou, S., Court, C. M., Lee, Y.-T., Chen, P.-J., Zhu, Y., et al. (2020). Hepatocellular Carcinoma-Circulating Tumor Cells Expressing PD-L1 Are Prognostic and Potentially Associated With Response to Checkpoint Inhibitors. Hepatology Communications, 4(10), 1527–1540. https://doi.org/10.1002/hep4.1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bootsma, M., McKay, R. R., Emamekhoo, H., Bade, R. M., Schehr, J. L., Mannino, M. C., et al. (2022). Longitudinal Molecular Profiling of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 40(31), 3633–3641. https://doi.org/10.1200/JCO.22.00219

    Article  CAS  PubMed  Google Scholar 

  64. Strati, A., Koutsodontis, G., Papaxoinis, G., Angelidis, I., Zavridou, M., Economopoulou, P., et al. (2017). Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28(8), 1923–1933. https://doi.org/10.1093/annonc/mdx206

    Article  CAS  PubMed  Google Scholar 

  65. Flores-Guzmán, F., Utikal, J., & Umansky, V. (2020). Dormant tumor cells interact with memory CD8+ T cells in RET transgenic mouse melanoma model. Cancer Letters, 474, 74–81. https://doi.org/10.1016/j.canlet.2020.01.016

    Article  CAS  PubMed  Google Scholar 

  66. Naxerova, K., Reiter, J. G., Brachtel, E., Lennerz, J. K., van de Wetering, M., Rowan, A., et al. (2017). Origins of lymphatic and distant metastases in human colorectal cancer. Science (New York, N.Y.), 357(6346), 55–60. https://doi.org/10.1126/science.aai8515

    Article  CAS  PubMed  Google Scholar 

  67. Wang, R., Li, J., Zhou, X., Mao, Y., Wang, W., Gao, S., et al. (2022). Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Medicine, 14(1), 93. https://doi.org/10.1186/s13073-022-01093-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reiter, J. G., Hung, W.-T., Lee, I.-H., Nagpal, S., Giunta, P., Degner, S., et al. (2020). Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nature Genetics, 52(7), 692–700. https://doi.org/10.1038/s41588-020-0633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mk, R., Tlh, O., Kb, J., Ee, M., Cc, L., Jl, Y., et al. (2023). Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell, 186(6). https://doi.org/10.1016/j.cell.2023.02.021

  70. Dammeijer, F., van Gulijk, M., Mulder, E. E., Lukkes, M., Klaase, L., van den Bosch, T., et al. (2020). The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell, 38(5), 685–700.e8. https://doi.org/10.1016/j.ccell.2020.09.001

    Article  CAS  PubMed  Google Scholar 

  71. van Krimpen, A., Gerretsen, V. I. V., Mulder, E. E. A. P., van Gulijk, M., van den Bosch, T. P. P., von der Thüsen, J., et al. (2022). Immune suppression in the tumor-draining lymph node corresponds with distant disease recurrence in patients with melanoma. Cancer Cell, 40(8), 798–799. https://doi.org/10.1016/j.ccell.2022.06.009

    Article  CAS  PubMed  Google Scholar 

  72. Pylaeva, E., Korschunow, G., Spyra, I., Bordbari, S., Siakaeva, E., Ozel, I., et al. (2022). During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Reports, 40(7). https://doi.org/10.1016/j.celrep.2022.111171

  73. Cousin, N., Cap, S., Dihr, M., Tacconi, C., Detmar, M., & Dieterich, L. C. (2021). Lymphatic PD-L1 Expression Restricts Tumor-Specific CD8+ T-cell Responses. Cancer Research, 81(15), 4133–4144. https://doi.org/10.1158/0008-5472.CAN-21-0633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patras, L., Shaashua, L., Matei, I., & Lyden, D. (2023). Immune determinants of the pre-metastatic niche. Cancer Cell, 41(3), 546–572. https://doi.org/10.1016/j.ccell.2023.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo, Y., Ji, X., Liu, J., Fan, D., Zhou, Q., Chen, C., et al. (2019). Effects of exosomes on pre-metastatic niche formation in tumors. Molecular Cancer, 18(1), 39. https://doi.org/10.1186/s12943-019-0995-1

    Article  PubMed  PubMed Central  Google Scholar 

  76. Poggio, M., Hu, T., Pai, C.-C., Chu, B., Belair, C. D., Chang, A., et al. (2019). Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell, 177(2), 414–427.e13. https://doi.org/10.1016/j.cell.2019.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, G., Huang, A. C., Zhang, W., Zhang, G., Wu, M., Xu, W., et al. (2018). Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 560(7718), 382–386. https://doi.org/10.1038/s41586-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, J., Zhang, H., Sun, X., Wang, X., Ren, T., Huang, Y., et al. (2020). Exosomal PD-L1 and N-cadherin predict pulmonary metastasis progression for osteosarcoma patients. Journal of Nanobiotechnology, 18(1), 151. https://doi.org/10.1186/s12951-020-00710-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, Y., Guo, J., Yu, L., Guo, T., Wang, J., Wang, X., & Chen, Y. (2021). PD-L1+ exosomes from bone marrow-derived cells of tumor-bearing mice inhibit antitumor immunity. Cellular & Molecular Immunology, 18(10), 2402–2409. https://doi.org/10.1038/s41423-020-0487-7

    Article  CAS  Google Scholar 

  80. Chen, J., Song, Y., Miao, F., Chen, G., Zhu, Y., Wu, N., et al. (2021). PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis. Cancer Science, 112(9), 3437–3454. https://doi.org/10.1111/cas.15033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morrissey, S. M., Zhang, F., Ding, C., Montoya-Durango, D. E., Hu, X., Yang, C., et al. (2021). Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metabolism, 33(10), 2040–2058.e10. https://doi.org/10.1016/j.cmet.2021.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu, M., Kenific, C. M., Boudreau, N., & Lyden, D. (2023). Tumor-derived nanoseeds condition the soil for metastatic organotropism. Seminars in Cancer Biology, 93, 70–82. https://doi.org/10.1016/j.semcancer.2023.05.003

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, W., Zhong, W., Wang, B., Yang, J., Yang, J., Yu, Z., et al. (2022). ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Developmental Cell, 57(3), 329–343.e7. https://doi.org/10.1016/j.devcel.2022.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Massagué, J., & Ganesh, K. (2021). Metastasis-Initiating Cells and Ecosystems. Cancer. Discovery, 11(4), 971–994. https://doi.org/10.1158/2159-8290.CD-21-0010

    Article  Google Scholar 

  85. Guldner, I. H., Wang, Q., Yang, L., Golomb, S. M., Zhao, Z., Lopez, J. A., et al. (2020). CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell, 183(5), 1234–1248.e25. https://doi.org/10.1016/j.cell.2020.09.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, X., Chen, Y., Lan, B., Wang, Y., Lin, W., Jiang, X., et al. (2022). Heterogeneity of tyrosine-based melanin anabolism regulates pulmonary and cerebral organotropic colonization microenvironment of melanoma cells. Theranostics, 12(5), 2063–2079. https://doi.org/10.7150/thno.69198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, X., Hu, L.-P., Qin, W.-T., Yang, Q., Chen, D.-Y., Li, Q., et al. (2021). Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nature Communications, 12(1), 174. https://doi.org/10.1038/s41467-020-20447-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Erlmeier, F., Klümper, N., Landgraf, L., Strissel, P. L., Strick, R., Sikic, D., et al. (2023). Spatial Immunephenotypes of Distant Metastases but not Matched Primary Urothelial Carcinomas Predict Response to Immune Checkpoint Inhibition. European Urology, 83(2), 133–142. https://doi.org/10.1016/j.eururo.2022.10.020

    Article  CAS  PubMed  Google Scholar 

  89. Mansfield, A. S., Aubry, M. C., Moser, J. C., Harrington, S. M., Dronca, R. S., Park, S. S., & Dong, H. (2016). Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 27(10), 1953–1958. https://doi.org/10.1093/annonc/mdw289

    Article  CAS  PubMed  Google Scholar 

  90. Kim, S., Koh, J., Kwon, D., Keam, B., Go, H., Kim, Y. A., et al. (2017). Comparative analysis of PD-L1 expression between primary and metastatic pulmonary adenocarcinomas. European Journal of Cancer (Oxford, England: 1990), 75, 141–149. https://doi.org/10.1016/j.ejca.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  91. Schoenfeld, A. J., Rizvi, H., Bandlamudi, C., Sauter, J. L., Travis, W. D., Rekhtman, N., et al. (2020). Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 31(5), 599–608. https://doi.org/10.1016/j.annonc.2020.01.065

    Article  CAS  PubMed  Google Scholar 

  92. Rozenblit, M., Huang, R., Danziger, N., Hegde, P., Alexander, B., Ramkissoon, S., et al. (2020). Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. Journal for Immunotherapy of Cancer, 8(2), e001558. https://doi.org/10.1136/jitc-2020-001558

    Article  PubMed  PubMed Central  Google Scholar 

  93. Szekely, B., Bossuyt, V., Li, X., Wali, V. B., Patwardhan, G. A., Frederick, C., et al. (2018). Immunological differences between primary and metastatic breast cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 29(11), 2232–2239. https://doi.org/10.1093/annonc/mdy399

    Article  CAS  PubMed  Google Scholar 

  94. Restle, D., Dux, J., Li, X., Byun, A. J., Choe, J. K., Li, Y., et al. (2023). Organ-specific heterogeneity in tumor-infiltrating immune cells and cancer antigen expression in primary and autologous metastatic lung adenocarcinoma. Journal for Immunotherapy of Cancer, 11(6), e006609. https://doi.org/10.1136/jitc-2022-006609

    Article  PubMed  PubMed Central  Google Scholar 

  95. Callea, M., Albiges, L., Gupta, M., Cheng, S.-C., Genega, E. M., Fay, A. P., et al. (2015). Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunology Research, 3(10), 1158–1164. https://doi.org/10.1158/2326-6066.CIR-15-0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parvathareddy, S. K., Siraj, A. K., Al-Badawi, I. A., Tulbah, A., Al-Dayel, F., & Al-Kuraya, K. S. (2021). Differential expression of PD-L1 between primary and metastatic epithelial ovarian cancer and its clinico-pathological correlation. Scientific Reports, 11(1), 3750. https://doi.org/10.1038/s41598-021-83276-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hong, L., Negrao, M. V., Dibaj, S. S., Chen, R., Reuben, A., Bohac, J. M., et al. (2020). Programmed Death-Ligand 1 Heterogeneity and Its Impact on Benefit From Immune Checkpoint Inhibitors in NSCLC. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 15(9), 1449–1459. https://doi.org/10.1016/j.jtho.2020.04.026

    Article  CAS  PubMed  Google Scholar 

  98. García-Mulero, S., Alonso, M. H., Pardo, J., Santos, C., Sanjuan, X., Salazar, R., et al. (2020). Lung metastases share common immune features regardless of primary tumor origin. Journal for Immunotherapy of Cancer, 8(1), e000491. https://doi.org/10.1136/jitc-2019-000491

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wu, J., Sun, W., Yang, X., Wang, H., Liu, X., Chi, K., et al. (2022). Heterogeneity of programmed death-ligand 1 expression and infiltrating lymphocytes in paired resected primary and metastatic non-small cell lung cancer. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 35(2), 218–227. https://doi.org/10.1038/s41379-021-00903-w

    Article  CAS  PubMed  Google Scholar 

  100. Placke, J.-M., Kimmig, M., Griewank, K., Herbst, R., Terheyden, P., Utikal, J., et al. (2023). Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma - analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM. EBioMedicine, 96, 104774. https://doi.org/10.1016/j.ebiom.2023.104774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Van den Eynde, M., Mlecnik, B., Bindea, G., Fredriksen, T., Church, S. E., Lafontaine, L., et al. (2018). The Link between the Multiverse of Immune Microenvironments in Metastases and the Survival of Colorectal Cancer Patients. Cancer Cell, 34(6), 1012–1026.e3. https://doi.org/10.1016/j.ccell.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  102. Wang, X., Bai, H., Zhang, J., Wang, Z., Duan, J., Cai, H., et al. (2023). Genetic Intratumor Heterogeneity Remodels the Immune Microenvironment and Induces Immune Evasion in Brain Metastasis of Lung Cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, S1556-0864(23), 01079–01071. https://doi.org/10.1016/j.jtho.2023.09.276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the figures were created with BioRender.com.

Funding

The work was supported by the National Natural Science Foundation of China (82173223, 82072629) and CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-044).

Author information

Authors and Affiliations

Authors

Contributions

HZ and WJ Concepted and designed this review.YH, MZ and XL wrote the main manuscript text. YH prepared figures 1-4 and Ming Zhu prepared the table 1. HZ and WJ edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Honghe Zhang or Weiqin Jiang.

Ethics declarations

Ethical approval

N/A

Informed Consent

N/A

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhu, M., Lai, X. et al. The roles of PD-L1 in the various stages of tumor metastasis. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10189-4

Keywords

Navigation