Skip to main content

Advertisement

Log in

Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Urruticoechea, A., Alemany, R., Balart, J., Villanueva, A., Viñals, F., & Capellá, G. (2010). Recent advances in cancer therapy: An overview. Current Pharmaceutical Design, 16, 3–10. https://doi.org/10.2174/138161210789941847

    Article  CAS  PubMed  Google Scholar 

  3. Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9, 193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, X., Zhang, H., & Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resist, 2, 141–160. https://doi.org/10.20517/cdr.2019.10

    Article  PubMed  PubMed Central  Google Scholar 

  5. Longley, D. B., & Johnston, P. G. (2005). Molecular mechanisms of drug resistance. The Journal of Pathology, 205, 275–292. https://doi.org/10.1002/path.1706

    Article  CAS  PubMed  Google Scholar 

  6. Smith, L., Watson, M. B., O’Kane, S. L., Drew, P. J., Lind, M. J., & Cawkwell, L. (2006). The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Molecular Cancer Therapeutics, 5, 2115–2120. https://doi.org/10.1158/1535-7163.Mct-06-0190

    Article  CAS  PubMed  Google Scholar 

  7. Harris, L. N., Broadwater, G., Lin, N. U., Miron, A., Schnitt, S. J., Cowan, D., Lara, J., Bleiweiss, I., Berry, D., Ellis, M., et al. (2006). Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: Results from CALGB 9342. Breast Cancer Research, 8, R66. https://doi.org/10.1186/bcr1622

    Article  PubMed  PubMed Central  Google Scholar 

  8. Murray, S., Briasoulis, E., Linardou, H., Bafaloukos, D., & Papadimitriou, C. (2012). Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treatment Reviews, 38, 890–903. https://doi.org/10.1016/j.ctrv.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  9. Szakács, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nature Reviews Drug Discovery, 5, 219–234. https://doi.org/10.1038/nrd1984

    Article  CAS  PubMed  Google Scholar 

  10. Vulsteke, C., Pfeil, A. M., Schwenkglenks, M., Pettengell, R., Szucs, T. D., Lambrechts, D., Peeters, M., van Dam, P., Dieudonné, A. S., Hatse, S., et al. (2014). Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Research and Treatment, 147, 557–570. https://doi.org/10.1007/s10549-014-3105-5

    Article  CAS  PubMed  Google Scholar 

  11. Porkka, K., Blomqvist, C., Rissanen, P., Elomaa, I., & Pyrhönen, S. (1994). Salvage therapies in women who fail to respond to first-line treatment with fluorouracil, epirubicin, and cyclophosphamide for advanced breast cancer. Journal of Clinical Oncology, 12, 1639–1647. https://doi.org/10.1200/jco.1994.12.8.1639

    Article  CAS  PubMed  Google Scholar 

  12. Sládek, N. E., Kollander, R., Sreerama, L., & Kiang, D. T. (2002). Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: A retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemotherapy and Pharmacology, 49, 309–321. https://doi.org/10.1007/s00280-001-0412-4

    Article  CAS  PubMed  Google Scholar 

  13. Galluzzi, L., Vitale, I., Michels, J., Brenner, C., Szabadkai, G., Harel-Bellan, A., Castedo, M., & Kroemer, G. (2014). Systems biology of cisplatin resistance: past, present and future. Cell Death Dis, 5, e1257. https://doi.org/10.1038/cddis.2013.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7, 339–348. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, J. C. (2016). Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore), 95, S20-s25. https://doi.org/10.1097/md.0000000000004766

    Article  CAS  PubMed  Google Scholar 

  16. Chen, K., Huang, Y. H., & Chen, J. L. (2013). Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacologica Sinica, 34, 732–740. https://doi.org/10.1038/aps.2013.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prasad, S., Ramachandran, S., Gupta, N., Kaushik, I., & Srivastava, S. K. (2020). Cancer cells stemness: A doorstep to targeted therapy. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1866, 165424. https://doi.org/10.1016/j.bbadis.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  18. Furth, J., Kahn, M. C., & Breedis, C. (1937). The transmission of leukemia of mice with a single cell. The American Journal of Cancer, 31, 276–282.

    Google Scholar 

  19. Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, The Journal of the American Society of Hematology, 112, 4793–4807.

    CAS  Google Scholar 

  20. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer, 8, 755–768.

    Article  CAS  PubMed  Google Scholar 

  21. Iwata, M. (1968). Study of serum lipids in infants. 1. Serum lipids in healthy infants. Nihon Shonika Gakkai Zasshi Acta Paediatrica Japonica, 72, 1075–1081.

    CAS  PubMed  Google Scholar 

  22. Phi, L.T.H., Sari, I.N., Yang, Y.-G., Lee, S.-H., Jun, N., Kim, K.S., Lee, Y.K., Kwon, H.Y. (2018). Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells International, 2018, 5416923. https://doi.org/10.1155/2018/5416923

  23. Shervington, A., & Lu, C. (2008). Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Investigation, 26, 535–542.

    Article  CAS  PubMed  Google Scholar 

  24. Vinogradov, S., & Wei, X. (2012). Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine, 7, 597–615.

    Article  CAS  PubMed  Google Scholar 

  25. Rachagani, S., Torres, M. P., Moniaux, N., & Batra, S. K. (2009). Current status of mucins in the diagnosis and therapy of cancer. BioFactors, 35, 509–527. https://doi.org/10.1002/biof.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds, I. S., Fichtner, M., McNamara, D. A., Kay, E. W., Prehn, J. H. M., & Burke, J. P. (2019). Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer and Metastasis Reviews, 38, 237–257. https://doi.org/10.1007/s10555-019-09781-w

    Article  CAS  PubMed  Google Scholar 

  27. Dhanisha, S. S., Guruvayoorappan, C., Drishya, S., & Abeesh, P. (2018). Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Critical Reviews in Oncology Hematology, 122, 98–122. https://doi.org/10.1016/j.critrevonc.2017.12.006

    Article  PubMed  Google Scholar 

  28. Brockhausen, I. (2003). Glycodynamics of mucin biosynthesis in gastrointestinal tumor cells. Advances in Experimental Medicine and Biology, 535, 163–188. https://doi.org/10.1007/978-1-4615-0065-0_11

    Article  CAS  PubMed  Google Scholar 

  29. Yonezawa, S., Higashi, M., Yamada, N., Yokoyama, S., Kitamoto, S., Kitajima, S., & Goto, M. (2011). Mucins in human neoplasms: Clinical pathology, gene expression and diagnostic application. Pathology International, 61, 697–716. https://doi.org/10.1111/j.1440-1827.2011.02734.x

    Article  CAS  PubMed  Google Scholar 

  30. Nath, S., & Mukherjee, P. (2014). MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 20, 332–342. https://doi.org/10.1016/j.molmed.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moniaux, N., Escande, F., Porchet, N., Aubert, J. P., & Batra, S. K. (2001). Structural organization and classification of the human mucin genes. Frontiers in Bioscience, 6, D1192-1206. https://doi.org/10.2741/moniaux

    Article  CAS  PubMed  Google Scholar 

  32. van Putten, J. P. M., & Strijbis, K. (2017). Transmembrane mucins: Signaling receptors at the intersection of inflammation and cancer. Journal of Innate Immunity, 9, 281–299. https://doi.org/10.1159/000453594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chauhan, S. C., Singh, A. P., Ruiz, F., Johansson, S. L., Jain, M., Smith, L. M., Moniaux, N., & Batra, S. K. (2006). Aberrant expression of MUC4 in ovarian carcinoma: Diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Modern Pathology, 19, 1386–1394. https://doi.org/10.1038/modpathol.3800646

    Article  CAS  PubMed  Google Scholar 

  34. Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: Protection and control of the cell surface. Nature Reviews Cancer, 4, 45–60. https://doi.org/10.1038/nrc1251

    Article  CAS  PubMed  Google Scholar 

  35. Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., Büchler, M. W., Aubert, J. P., & Batra, S. K. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: A potential role of MUC4 as a tumor marker of diagnostic significance. Clinical Cancer Research, 7, 4033–4040.

    CAS  PubMed  Google Scholar 

  36. Balagué, C., Audié, J. P., Porchet, N., & Real, F. X. (1995). In situ hybridization shows distinct patterns of mucin gene expression in normal, benign, and malignant pancreas tissues. Gastroenterology, 109, 953–964. https://doi.org/10.1016/0016-5085(95)90406-9

    Article  PubMed  Google Scholar 

  37. Dong, Y., Walsh, M. D., Cummings, M. C., Wright, R. G., Khoo, S. K., Parsons, P. G., & McGuckin, M. A. (1997). Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. The Journal of Pathology, 183, 311–317. https://doi.org/10.1002/(sici)1096-9896(199711)183:3%3c311::Aid-path917%3e3.0.Co;2-2

    Article  CAS  PubMed  Google Scholar 

  38. Giuntoli, R. L., Rodriguez, G. C., Whitaker, R. S., Dodge, R., & Voynow, J. A. (1998). Mucin gene expression in ovarian cancers. Cancer Research, 58, 5546–5550.

    CAS  PubMed  Google Scholar 

  39. Maher, D. M., Gupta, B. K., Nagata, S., Jaggi, M., & Chauhan, S. C. (2011). Mucin 13: Structure, function, and potential roles in cancer pathogenesis. Molecular Cancer Research, 9, 531–537. https://doi.org/10.1158/1541-7786.Mcr-10-0443

    Article  CAS  PubMed  Google Scholar 

  40. Jonckheere, N., Skrypek, N., & Van Seuningen, I. (2014). Mucins and tumor resistance to chemotherapeutic drugs. Biochimica et Biophysica Acta, 1846, 142–151. https://doi.org/10.1016/j.bbcan.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  41. Lee, D.H., Choi, S., Park, Y., Jin, H.S. (2021). Mucin1 and Mucin16: Therapeutic targets for cancer therapy. Pharmaceuticals (Basel), 14. https://doi.org/10.3390/ph14101053.

  42. Ponnusamy, M. P., Seshacharyulu, P., Lakshmanan, I., Vaz, A. P., Chugh, S., & Batra, S. K. (2013). Emerging role of mucins in epithelial to mesenchymal transition. Current Cancer Drug Targets, 13, 945–956. https://doi.org/10.2174/15680096113136660100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marimuthu, S., Rauth, S., Ganguly, K., Zhang, C., Lakshmanan, I., Batra, S. K., & Ponnusamy, M. P. (2021). Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer and Metastasis Reviews, 40, 575–588. https://doi.org/10.1007/s10555-021-09959-1

    Article  CAS  PubMed  Google Scholar 

  44. Gendler, S. J., & Spicer, A. P. (1995). Epithelial mucin genes. Annual Review of Physiology, 57, 607–634. https://doi.org/10.1146/annurev.ph.57.030195.003135

    Article  CAS  PubMed  Google Scholar 

  45. Thornton, D. J., Rousseau, K., & McGuckin, M. A. (2008). Structure and function of the polymeric mucins in airways mucus. Annual Review of Physiology, 70, 459–486. https://doi.org/10.1146/annurev.physiol.70.113006.100702

    Article  CAS  PubMed  Google Scholar 

  46. Desseyn, J.-L., Gouyer, V., Tetaert, T. (2008). Architecture of the gel-forming mucins. The Epithelial Mucins: Structure/Function. Roles in Cancer and Inflammatory Diseases, Isabelle Van Seuningen/Research Signpost, 1–16, 978-81-308-0256-5. ⟨hal-02340996⟩.

  47. Hattrup, C. L., & Gendler, S. J. (2008). Structure and function of the cell surface (tethered) mucins. Annual Review of Physiology, 70, 431–457. https://doi.org/10.1146/annurev.physiol.70.113006.100659

    Article  CAS  PubMed  Google Scholar 

  48. Jonckheere, N., Skrypek, N., Frénois, F., & Van Seuningen, I. (2013). Membrane-bound mucin modular domains: From structure to function. Biochimie, 95, 1077–1086. https://doi.org/10.1016/j.biochi.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  49. Jonckheere, N., & Van Seuningen, I. (2008). The membrane-bound mucins: How large O-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies. Critical Reviews in Oncogenesis, 14, 177–196. https://doi.org/10.1615/critrevoncog.v14.i2-3.30

    Article  PubMed  Google Scholar 

  50. Segui-Perez, C., Stapels, D.A.C., Ma, Z., Su, J., Passchier, E., Westendorp, B., Wu, W., Putten, J.P.M.V., Strijbis, K. (2022). MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via Protein Kinase C. bioRxiv,. https://doi.org/10.1101/2022.10.27.51398

  51. Williams, S. J., Wreschner, D. H., Tran, M., Eyre, H. J., Sutherland, G. R., & McGuckin, M. A. (2001). Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. Journal of Biological Chemistry, 276, 18327–18336. https://doi.org/10.1074/jbc.M008850200

    Article  CAS  PubMed  Google Scholar 

  52. Chauhan, S. C., Ebeling, M. C., Maher, D. M., Koch, M. D., Watanabe, A., Aburatani, H., Lio, Y., & Jaggi, M. (2012). MUC13 mucin augments pancreatic tumorigenesis. Molecular Cancer Therapeutics, 11, 24–33. https://doi.org/10.1158/1535-7163.Mct-11-0598

    Article  CAS  PubMed  Google Scholar 

  53. Chauhan, S. C., Kumar, D., & Jaggi, M. (2009). Mucins in ovarian cancer diagnosis and therapy. Journal of Ovarian Research, 2, 21. https://doi.org/10.1186/1757-2215-2-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chauhan, S. C., Vannatta, K., Ebeling, M. C., Vinayek, N., Watanabe, A., Pandey, K. K., Bell, M. C., Koch, M. D., Aburatani, H., Lio, Y., et al. (2009). Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Research, 69, 765–774. https://doi.org/10.1158/0008-5472.Can-08-0587

    Article  CAS  PubMed  Google Scholar 

  55. Gupta, B. K., Maher, D. M., Ebeling, M. C., Stephenson, P. D., Puumala, S. E., Koch, M. R., Aburatani, H., Jaggi, M., & Chauhan, S. C. (2014). Functions and regulation of MUC13 mucin in colon cancer cells. Journal of Gastroenterology, 49, 1378–1391. https://doi.org/10.1007/s00535-013-0885-z

    Article  CAS  PubMed  Google Scholar 

  56. Khan, S., Ebeling, M. C., Zaman, M. S., Sikander, M., Yallapu, M. M., Chauhan, N., Yacoubian, A. M., Behrman, S. W., Zafar, N., Kumar, D., et al. (2014). MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget, 5, 7599–7609. https://doi.org/10.18632/oncotarget.2281

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khan, S., Sikander, M., Ebeling, M. C., Ganju, A., Kumari, S., Yallapu, M. M., Hafeez, B. B., Ise, T., Nagata, S., Zafar, N., et al. (2017). MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene, 36, 491–500. https://doi.org/10.1038/onc.2016.218

    Article  CAS  PubMed  Google Scholar 

  58. Filippou, P. S., Ren, A. H., Korbakis, D., Dimitrakopoulos, L., Soosaipillai, A., Barak, V., Frenkel, S., Pe’er, J., Lotem, M., Merims, S., et al. (2018). Exploring the potential of mucin 13 (MUC13) as a biomarker for carcinomas and other diseases. Clinical Chemistry and Laboratory Medicine, 56, 1945–1953. https://doi.org/10.1515/cclm-2018-0139

    Article  CAS  PubMed  Google Scholar 

  59. Khan, S., Zafar, N., Khan, S. S., Setua, S., Behrman, S. W., Stiles, Z. E., Yallapu, M. M., Sahay, P., Ghimire, H., Ise, T., et al. (2018). Clinical significance of MUC13 in pancreatic ductal adenocarcinoma. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 20, 563–572. https://doi.org/10.1016/j.hpb.2017.12.003

    Article  PubMed  Google Scholar 

  60. Kumari, S., Khan, S., Gupta, S. C., Kashyap, V. K., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2018). MUC13 contributes to rewiring of glucose metabolism in pancreatic cancer. Oncogenesis, 7, 19. https://doi.org/10.1038/s41389-018-0031-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Massey, A. E., Doxtater, K. A., Yallapu, M. M., & Chauhan, S. C. (2020). Biophysical changes caused by altered MUC13 expression in pancreatic cancer cells. Micron, 130, 102822. https://doi.org/10.1016/j.micron.2019.102822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nishii, Y., Yamaguchi, M., Kimura, Y., Hasegawa, T., Aburatani, H., Uchida, H., Hirata, K., & Sakuma, Y. (2015). A newly developed anti-Mucin 13 monoclonal antibody targets pancreatic ductal adenocarcinoma cells. International Journal of Oncology, 46, 1781–1787. https://doi.org/10.3892/ijo.2015.2880

    Article  CAS  PubMed  Google Scholar 

  63. Stiles, Z. E., Khan, S., Patton, K. T., Jaggi, M., Behrman, S. W., & Chauhan, S. C. (2019). Transmembrane mucin MUC13 distinguishes intraductal papillary mucinous neoplasms from non-mucinous cysts and is associated with high-risk lesions. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 21, 87–95. https://doi.org/10.1016/j.hpb.2018.07.009

    Article  PubMed  Google Scholar 

  64. Mito, K., Saito, M., Morita, K., Maetani, I., Sata, N., Mieno, M., & Fukushima, N. (2018). Clinicopathological and prognostic significance of MUC13 and AGR2 expression in intraductal papillary mucinous neoplasms of the pancreas. Pancreatology, 18, 407–412. https://doi.org/10.1016/j.pan.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  65. Gupta, B. K., Maher, D. M., Ebeling, M. C., Sundram, V., Koch, M. D., Lynch, D. W., Bohlmeyer, T., Watanabe, A., Aburatani, H., Puumala, S. E., et al. (2012). Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. Journal of Histochemistry and Cytochemistry, 60, 822–831. https://doi.org/10.1369/0022155412460678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walsh, M. D., Young, J. P., Leggett, B. A., Williams, S. H., Jass, J. R., & McGuckin, M. A. (2007). The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Human Pathology, 38, 883–892. https://doi.org/10.1016/j.humpath.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  67. Kasprzak, A., Adamek, A. (2019). Mucins: The Old, the new and the promising factors in hepatobiliary carcinogenesis. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20061288

  68. Tiemin, P., Fanzheng, M., Peng, X., Jihua, H., Ruipeng, S., Yaliang, L., Yan, W., Junlin, X., Qingfu, L., Zhefeng, H., et al. (2020). MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. Journal of Hepatology, 72, 761–773. https://doi.org/10.1016/j.jhep.2019.11.021

    Article  CAS  PubMed  Google Scholar 

  69. Dai, Y., Liu, L., Zeng, T., Liang, J. Z., Song, Y., Chen, K., Li, Y., Chen, L., Zhu, Y. H., Li, J., et al. (2018). Overexpression of MUC13, a poor prognostic predictor, promotes cell growth by activating wnt signaling in hepatocellular carcinoma. American Journal of Pathology, 188, 378–391. https://doi.org/10.1016/j.ajpath.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  70. Pang, Y., Zhang, Y., Zhang, H. Y., Wang, W. H., Jin, G., Liu, J. W., & Zhu, Z. J. (2022). MUC13 promotes lung cancer development and progression by activating ERK signaling. Oncology Letters, 23, 37. https://doi.org/10.3892/ol.2021.13155

    Article  CAS  PubMed  Google Scholar 

  71. Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., et al. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140, 2351–2363. https://doi.org/10.1002/ijc.30651

    Article  CAS  PubMed  Google Scholar 

  72. Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8, 7548–7558. https://doi.org/10.18632/oncotarget.13692

    Article  PubMed  Google Scholar 

  73. Shimamura, T., Ito, H., Shibahara, J., Watanabe, A., Hippo, Y., Taniguchi, H., Chen, Y., Kashima, T., Ohtomo, T., Tanioka, F., et al. (2005). Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Science, 96, 265–273. https://doi.org/10.1111/j.1349-7006.2005.00043.x

    Article  CAS  PubMed  Google Scholar 

  74. He, L., Qu, L., Wei, L., Chen, Y., & Suo, J. (2017). Reduction of miR-132-3p contributes to gastric cancer proliferation by targeting MUC13. Molecular Medicine Reports, 15, 3055–3061. https://doi.org/10.3892/mmr.2017.6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, Z. T., Li, Y., Yuan, H. Y., Ma, F. H., Song, Y. M., & Tian, Y. T. (2020). Identification of key genes and pathways in gastric signet ring cell carcinoma based on transcriptome analysis. World J Clin Cases, 8, 658–669. https://doi.org/10.12998/wjcc.v8.i4.658

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang, H., Shen, L., Lin, Y., Shi, Q., Yang, Y., & Chen, K. (2015). The expression and prognostic significance of Mucin 13 and Mucin 20 in esophageal squamous cell carcinoma. Journal of Cancer Research and Therapeutics, 11(Suppl 1), C74-79. https://doi.org/10.4103/0973-1482.163846

    Article  CAS  PubMed  Google Scholar 

  77. Li, P., Wang, H., Hou, M., Li, D., & Bai, H. (2017). Upstream stimulating factor1 (USF1) enhances the proliferation of glioblastoma stem cells mainly by activating the transcription of mucin13 (MUC13). Die Pharmazie, 72, 98–102. https://doi.org/10.1691/ph.2017.6788

    Article  CAS  PubMed  Google Scholar 

  78. Sung, H. Y., Park, A. K., Ju, W., & Ahn, J. H. (2014). Overexpression of mucin 13 due to promoter methylation promotes aggressive behavior in ovarian cancer cells. Yonsei Medical Journal, 55, 1206–1213. https://doi.org/10.3349/ymj.2014.55.5.1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dhasmana, A., Dhasmana, S., Agarwal, S., Khan, S., Haque, S., Jaggi, M., Yallapu, M. M., & Chauhan, S. C. (2023). Integrative big transcriptomics data analysis implicates crucial role of MUC13 in pancreatic cancer. Computational and Structural Biotechnology Journal, 21, 2845–2857. https://doi.org/10.1016/j.csbj.2023.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jonckheere, N., Vincent, A., Neve, B., & Van Seuningen, I. (2021). Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochimica et Biophysica Acta - Reviews on Cancer, 1876, 188538. https://doi.org/10.1016/j.bbcan.2021.188538

    Article  CAS  PubMed  Google Scholar 

  81. Thompson, C. M., Cannon, A., West, S., Ghersi, D., Atri, P., Bhatia, R., Smith, L., Rachagani, S., Wichman, C., Kumar, S., et al. (2021). Mucin expression and splicing determine novel subtypes and patient mortality in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 27, 6787–6799. https://doi.org/10.1158/1078-0432.Ccr-21-1591

    Article  CAS  PubMed  Google Scholar 

  82. Fabregas, J. C., Ramnaraign, B., & George, T. J. (2022). Clinical updates for colon cancer care in 2022. Clinical Colorectal Cancer, 21, 198–203. https://doi.org/10.1016/j.clcc.2022.05.006

    Article  PubMed  Google Scholar 

  83. Byrd, J. C., & Bresalier, R. S. (2004). Mucins and mucin binding proteins in colorectal cancer. Cancer and Metastasis Reviews, 23, 77–99. https://doi.org/10.1023/a:1025815113599

    Article  CAS  PubMed  Google Scholar 

  84. Jonckheere, N., & Van Seuningen, I. (2010). The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 92, 1–11. https://doi.org/10.1016/j.biochi.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  85. Cox, K.E., Liu, S., Lwin, T.M., Hoffman, R.M., Batra, S.K., Bouvet, M. (2023). The mucin family of proteins: Candidates as potential biomarkers for colon cancer. Cancers (Basel), 15. https://doi.org/10.3390/cancers15051491.

  86. Sheng, Y. H., He, Y., Hasnain, S. Z., Wang, R., Tong, H., Clarke, D. T., Lourie, R., Oancea, I., Wong, K. Y., Lumley, J. W., et al. (2017). MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene, 36, 700–713. https://doi.org/10.1038/onc.2016.241

    Article  CAS  PubMed  Google Scholar 

  87. Sheng, Y. H., Wong, K. Y., Seim, I., Wang, R., He, Y., Wu, A., Patrick, M., Lourie, R., Schreiber, V., Giri, R., et al. (2019). MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene, 38, 7294–7310. https://doi.org/10.1038/s41388-019-0951-y

    Article  CAS  PubMed  Google Scholar 

  88. Doxtater, K., Tripathi, M. K., Sekhri, R., Hafeez, B. B., Khan, S., Zafar, N., Behrman, S. W., Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2023). MUC13 drives cancer aggressiveness and metastasis through the YAP1-dependent pathway. Life Sci Alliance, 6(12). https://doi.org/10.26508/lsa.202301975

  89. Lei, Z. N., Teng, Q. X., Tian, Q., Chen, W., Xie, Y., Wu, K., Zeng, Q., Zeng, L., Pan, Y., Chen, Z. S., et al. (2022). Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduction and Targeted Therapy, 7, 358. https://doi.org/10.1038/s41392-022-01190-w

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stomach Cancer Survival Rates. The American Cancer Society medical and editorial content team 2023. https://www.cancer.org/cancer/types/stomach-cancer/detection-diagnosis-staging/survival-rates.html

  91. Hepatocellular Carcinoma (HCC). Cleveland Clinic medical professional 2021. https://my.clevelandclinic.org/health/diseases/21709-hepatocellular-carcinoma-hcc

  92. Toh, M. R., Wong, E. Y. T., Wong, S. H., Ng, A. W. T., Loo, L. H., Chow, P. K., & Ngeow, J. (2023). Global Epidemiology and genetics of hepatocellular carcinoma. Gastroenterology, 164, 766–782. https://doi.org/10.1053/j.gastro.2023.01.033

    Article  PubMed  Google Scholar 

  93. Ganesan, P., & Kulik, L. M. (2023). Hepatocellular carcinoma: New developments. Clinics in Liver Disease, 27, 85–102. https://doi.org/10.1016/j.cld.2022.08.004

    Article  PubMed  Google Scholar 

  94. Webb, P. M., & Jordan, S. J. (2017). Epidemiology of epithelial ovarian cancer. Best Practice & Research Clinical Obstetrics & Gynaecology, 41, 3–14. https://doi.org/10.1016/j.bpobgyn.2016.08.006

    Article  Google Scholar 

  95. Ren, A. H., Filippou, P. S., Soosaipillai, A., Dimitrakopoulos, L., Korbakis, D., Leung, F., Kulasingam, V., Bernardini, M. Q., & Diamandis, E. P. (2023). Mucin 13 (MUC13) as a candidate biomarker for ovarian cancer detection: Potential to complement CA125 in detecting non-serous subtypes. Clinical Chemistry and Laboratory Medicine, 61, 464–472. https://doi.org/10.1515/cclm-2022-0491

    Article  CAS  PubMed  Google Scholar 

  96. Bade, B. C., & Dela Cruz, C. S. (2020). Lung cancer 2020: Epidemiology, etiology, and prevention. Clinics in Chest Medicine, 41, 1–24. https://doi.org/10.1016/j.ccm.2019.10.001

    Article  PubMed  Google Scholar 

  97. Yang, D., Liu, Y., Bai, C., Wang, X., & Powell, C. A. (2020). Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Letters, 468, 82–87. https://doi.org/10.1016/j.canlet.2019.10.009

    Article  CAS  PubMed  Google Scholar 

  98. Vaidya, F. U., Sufiyan Chhipa, A., Mishra, V., Gupta, V. K., Rawat, S. G., Kumar, A., & Pathak, C. (2022). Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken), 5, e1291. https://doi.org/10.1002/cnr2.1291

    Article  CAS  PubMed  Google Scholar 

  99. Barrera-Rodríguez, R. (2018). Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomedical Reports, 9, 375–382. https://doi.org/10.3892/br.2018.1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hammerman, P. S., Lawrence, M. S., Voet, D., Jing, R., Cibulskis, K., Sivachenko, A., Stojanov, P., McKenna, A., Lander, E. S., Gabriel, S., Getz, G., Sougnez, C., Imielinski, M., Helman, E., Hernandez, B., Pho, N. H., Meyerson, M., Chu, A., Chun, H.-J. E., et al. Comprehensive genomic characterization of squamous cell lung cancers. PubMed. nih.gov

  101. Giordano, T. J. (2014). The cancer genome atlas research network: A sight to behold. Endocrine Pathology, 25, 362–365. https://doi.org/10.1007/s12022-014-9345-4

    Article  PubMed  Google Scholar 

  102. Collisson, E. A., Campbell, J. D., Brooks, A. N., Berger, A. H., Lee, W., Chmielecki, J., Beer, D. G., Cope, L., Creighton, C. J., Danilova, L., Ding, L., Getz, G., Hammerman, P. S., Neil Hayes, D., Hernandez, B., Herman, J. G., Heymach, J. V., Jurisica, I., Kucherlapati, R., … John Flynn, H. (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511), 543–550. https://doi.org/10.1038/nature13385

    Article  ADS  CAS  Google Scholar 

  103. Begicevic, R.R., Falasca, M. (2017). ABC transporters in cancer stem cells: Beyond chemoresistance. International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18112362.

  104. Zhao, J. (2016). Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacology & Therapeutics, 160, 145–158. https://doi.org/10.1016/j.pharmthera.2016.02.008

    Article  CAS  Google Scholar 

  105. Hasan, S., Taha, R., & Omri, H. E. (2018). Current opinions on chemoresistance: An overview. Bioinformation, 14, 80–85. https://doi.org/10.6026/97320630014080

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen, W., Qin, Y., & Liu, S. (2018). Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clinical and Translational Medicine, 7, 27. https://doi.org/10.1186/s40169-018-0205-6

    Article  PubMed  PubMed Central  Google Scholar 

  107. Samuel, S.M., Varghese, E., Koklesová, L., Líšková, A., Kubatka, P., Büsselberg, D. (2020). Counteracting chemoresistance with metformin in breast cancers: Targeting cancer stem cells. Cancers (Basel), 12. https://doi.org/10.3390/cancers12092482.

  108. Nussinov, R., Tsai, C. J., & Jang, H. (2017). A new view of pathway-driven drug resistance in tumor proliferation. Trends in Pharmacological Sciences, 38, 427–437. https://doi.org/10.1016/j.tips.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rajabpour, A., Rajaei, F., & Teimoori-Toolabi, L. (2017). Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology, 17, 310–320. https://doi.org/10.1016/j.pan.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  110. Alfarouk, K. O., Stock, C. M., Taylor, S., Walsh, M., Muddathir, A. K., Verduzco, D., Bashir, A. H., Mohammed, O. Y., Elhassan, G. O., Harguindey, S., et al. (2015). Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell International, 15, 71. https://doi.org/10.1186/s12935-015-0221-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Moulder, S. (2010). Intrinsic resistance to chemotherapy in breast cancer. Womens Health (Lond), 6, 821–830. https://doi.org/10.2217/whe.10.60

    Article  CAS  PubMed  Google Scholar 

  112. Lippert, T. H., Ruoff, H. J., & Volm, M. (2008). Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung, 58, 261–264. https://doi.org/10.1055/s-0031-1296504

    Article  CAS  PubMed  Google Scholar 

  113. Schwarzenbach, H., & Gahan, P. B. (2019). Resistance to cis- and carboplatin initiated by epigenetic changes in ovarian cancer patients. Cancer Drug Resist, 2, 271–296. https://doi.org/10.20517/cdr.2019.010

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chen, Y., Song, Y., Mi, Y., Jin, H., Cao, J., Li, H., Han, L., Huang, T., Zhang, X., Ren, S., et al. (2020). microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis, 25, 205–216. https://doi.org/10.1007/s10495-019-01588-y

    Article  CAS  PubMed  Google Scholar 

  115. Wang, H., Guan, Z., He, K., Qian, J., Cao, J., & Teng, L. (2017). LncRNA UCA1 in anti-cancer drug resistance. Oncotarget, 8, 64638–64650. https://doi.org/10.18632/oncotarget.18344

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ebrahimi Ghahnavieh, L., Tabatabaeian, H., Ebrahimi Ghahnavieh, Z., Honardoost, M. A., Azadeh, M., Moazeni Bistgani, M., & Ghaedi, K. (2020). Fluctuating expression of miR-584 in primary and high-grade gastric cancer. BMC Cancer, 20, 621. https://doi.org/10.1186/s12885-020-07116-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lim, S. K., Tabatabaeian, H., Lu, S. Y., Kang, S. A., Sundaram, G. M., Sampath, P., Chan, S. W., Hong, W. J., & Lim, Y. P. (2020). Hippo/MST blocks breast cancer by downregulating WBP2 oncogene expression via miRNA processor Dicer. Cell Death & Disease, 11, 669. https://doi.org/10.1038/s41419-020-02901-3

    Article  CAS  Google Scholar 

  118. Adami, B., Tabatabaeian, H., Ghaedi, K., Talebi, A., Azadeh, M., & Dehdashtian, E. (2019). miR-146a is deregulated in gastric cancer. Journal of Cancer Research and Therapeutics, 15, 108–114. https://doi.org/10.4103/jcrt.JCRT_855_17

    Article  CAS  PubMed  Google Scholar 

  119. Chan, J. J., Tay, Y. (2018). Noncoding RNA:RNA regulatory networks in cancer. The International Journal of Molecular Science, 19. https://doi.org/10.3390/ijms19051310.

  120. Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews Cancer, 18, 5–18. https://doi.org/10.1038/nrc.2017.99

    Article  CAS  PubMed  Google Scholar 

  121. Ramos, E. K., Hoffmann, A. D., Gerson, S. L., & Liu, H. (2017). New opportunities and challenges to defeat cancer stem cells. Trends in cancer, 3, 780–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 29, 4741–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Flanagan, D. J., Barker, N., Costanzo, N. S. D., Mason, E. A., Gurney, A., Meniel, V. S., Koushyar, S., Austin, C. R., Ernst, M., & Pearson, H. B. (2019). Frizzled-7 is required for Wnt signaling in gastric tumors with and without Apc mutations. Cancer Research, 79, 970–981.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, Y., Morris, J. P., IV., Yan, W., Schofield, H. K., Gurney, A., Simeone, D. M., Millar, S. E., Hoey, T., Hebrok, M., & Pasca di Magliano, M. (2013). Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Research, 73, 4909–4922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sinnberg, T., Levesque, M. P., Krochmann, J., Cheng, P. F., Ikenberg, K., Meraz-Torres, F., Niessner, H., Garbe, C., & Busch, C. (2018). Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Molecular Cancer, 17, 1–19.

    Article  Google Scholar 

  126. Liu, Y., Chang, Y., Lu, S., & Xiang, Y. Y. (2019). Downregulation of long noncoding RNA DGCR5 contributes to the proliferation, migration, and invasion of cervical cancer by activating Wnt signaling pathway. Journal of Cellular Physiology, 234, 11662–11669.

    Article  CAS  PubMed  Google Scholar 

  127. Veeck, J., Bektas, N., Hartmann, A., Kristiansen, G., Heindrichs, U., Knüchel, R., & Dahl, E. (2008). Wnt signalling in human breast cancer: Expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours. Breast Cancer Research, 10, 1–11.

    Article  Google Scholar 

  128. Murillo-Garzón, V., & Kypta, R. (2017). WNT signalling in prostate cancer. Nature Reviews Urology, 14, 683–696.

    Article  PubMed  Google Scholar 

  129. McCord, M., Mukouyama, Y.-S., Gilbert, M. R., & Jackson, S. (2017). Targeting WNT signaling for multifaceted glioblastoma therapy. Frontiers in cellular neuroscience, 11, 318.

    Article  PubMed  PubMed Central  Google Scholar 

  130. van Andel, H., Kocemba, K. A., Spaargaren, M., & Pals, S. T. (2019). Aberrant Wnt signaling in multiple myeloma: Molecular mechanisms and targeting options. Leukemia, 33, 1063–1075.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ashihara, E., Takada, T., & Maekawa, T. (2015). Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Science, 106, 665–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yadav, A. K., & Desai, N. S. (2019). Cancer stem cells: Acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Reviews and Reports, 15, 331–355.

    Article  PubMed  Google Scholar 

  133. Steinbichler, T. B., Dudás, J., Skvortsov, S., Ganswindt, U., Riechelmann, H., & Skvortsova, I. I. (2018). Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology, 53, 156–167. https://doi.org/10.1016/j.semcancer.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  134. Jaiswal, R., Luk, F., Dalla, P. V., Grau, G. E. R., & Bebawy, M. (2013). Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS ONE, 8, e61515.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vesel, M., Rapp, J., Feller, D., Kiss, E., Jaromi, L., Meggyes, M., Miskei, G., Duga, B., Smuk, G., & Laszlo, T. (2017). ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respiratory Research, 18, 1–11.

    Article  Google Scholar 

  136. Schinkel, A. H., Smit, J. J., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A., van der Valk, M. A., Robanus-Maandag, E. C., te Riele, H. P., et al. (1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 77, 491–502. https://doi.org/10.1016/0092-8674(94)90212-7

    Article  CAS  PubMed  Google Scholar 

  137. Johnson, W. W. (2002). P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: Modulation of chemotherapy resistance. Methods and Findings in Experimental and Clinical Pharmacology, 24, 501–514. https://doi.org/10.1358/mf.2002.24.8.705071

    Article  CAS  PubMed  Google Scholar 

  138. Cerezo, D., Lencina, M., Ruiz-Alcaraz, A. J., Ferragut, J. A., Saceda, M., Sanchez, M., Cánovas, M., García-Peñarrubia, P., & Martín-Orozco, E. (2012). Acquisition of MDR phenotype by leukemic cells is associated with increased caspase-3 activity and a collateral sensitivity to cold stress. Journal of Cellular Biochemistry, 113, 1416–1425. https://doi.org/10.1002/jcb.24016

    Article  CAS  PubMed  Google Scholar 

  139. Cerezo, D., Ruiz-Alcaraz, A. J., Lencina-Guardiola, M., Cánovas, M., García-Peñarrubia, P., Martínez-López, I., & Martín-Orozco, E. (2017). Attenuated JNK signaling in multidrug-resistant leukemic cells Dual role of MAPK in cell survival. Cell Signal, 30, 162–170. https://doi.org/10.1016/j.cellsig.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  140. Pallis, M., & Russell, N. (2000). P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood, 95, 2897–2904.

    Article  CAS  PubMed  Google Scholar 

  141. Weisburg, J. H., Roepe, P. D., Dzekunov, S., & Scheinberg, D. A. (1999). Intracellular pH and multidrug resistance regulate complement-mediated cytotoxicity of nucleated human cells. Journal of Biological Chemistry, 274, 10877–10888. https://doi.org/10.1074/jbc.274.16.10877

    Article  CAS  PubMed  Google Scholar 

  142. Ding, S., Chamberlain, M., McLaren, A., Goh, L., Duncan, I., & Wolf, C. R. (2001). Cross-talk between signalling pathways and the multidrug resistant protein MDR-1. British Journal of Cancer, 85, 1175–1184. https://doi.org/10.1054/bjoc.2001.2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cerezo, D., Cánovas, M., García-Peñarrubia, P., & Martín-Orozco, E. (2015). Collateral sensitivity to cold stress and differential BCL-2 family expression in new daunomycin-resistant lymphoblastoid cell lines. Experimental Cell Research, 331, 11–20. https://doi.org/10.1016/j.yexcr.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  144. Goler-Baron, V., & Assaraf, Y. G. (2011). Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS ONE, 6, e16007. https://doi.org/10.1371/journal.pone.0016007

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Horio, M., Gottesman, M. M., & Pastan, I. (1988). ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proceedings of the National Academy of Sciences of the United States of America, 85, 3580–3584. https://doi.org/10.1073/pnas.85.10.3580

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Leibovitz, A., Stinson, J. C., McCombs, W. B., 3rd., McCoy, C. E., Mazur, K. C., & Mabry Mabry, N. D. (1976). Classification of human colorectal adenocarcinoma cell lines. Cancer Research, 36, 4562–4569.

    CAS  PubMed  Google Scholar 

  147. Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu1, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2016). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558.

  148. Khan, S., Ebeling, M. C., Zaman, M. S., Sikander, M., Yallapu, M. M., Chauhan, N., Yacoubian, A. M., Behrman, S. W., Zafar, N., Kumar, D., et al. (2014). MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget, 5(17), 7599–7609.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Setua, S., Khan, S., Yallapu, M. M., Behrman, S. W., Sikander, M., Khan, S. S., Jaggi, M., & Chauhan, S. C. (2017). Restitution of tumor suppressor MicroRNA-145 using magnetic nanoformulation for pancreatic cancer therapy. Journal of Gastrointestinal Surgery, 21, 94–105. https://doi.org/10.1007/s11605-016-3222-z

    Article  PubMed  Google Scholar 

  150. Sikander, M. (2012). Mucins: Potential for ovarian cancer biomarkers. International Journal of Biomedical and Advance Research, 3(6). https://doi.org/10.7439/ijbar.v3i6.526.

  151. Gupta, B. K., Sikander, M., & Jaggi, M. J. (2016). Gastroenterol Dig Dis 1(2). Link: Overview of mucin (MUC13) in gastrointestinal cancers. (https://www.alliedacademies.org/).

  152. Sikander, M., Malik, S., Khan, S., Kumari, S., Chauhan, N., Khan, P., Halaweish, F.T., Chauhan, B., Yallapu, M. M., Jaggi, M., et al. (2019). Novel mechanistic insight into the anticancer activity of cucurbitacin D against pancreatic cancer (Cuc D attenuates pancreatic cancer). Cells, 9. https://doi.org/10.3390/cells9010103.

  153. Mills, J. C., Stanger, B. Z., & Sander, M. (2019). Nomenclature for cellular plasticity: Are the terms as plastic as the cells themselves? EMBO Journal, 38, e103148. https://doi.org/10.15252/embj.2019103148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discov, 9, 837–851. https://doi.org/10.1158/2159-8290.Cd-19-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 10, 622–640.

    CAS  PubMed  Google Scholar 

  156. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  157. Nieto, M. A., Huang, R. Y., Jackson, R. A., & Thiery, J. P. E. M. T. (2016). Cell, 2016(166), 21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  Google Scholar 

  158. Shibata, M., Hoque, M.O. (2019). Targeting cancer stem cells: A strategy for effective eradication of cancer. Cancers (Basel), 11 https://doi.org/10.3390/cancers11050732.

  159. Khan, A.Q., Ahmed, E.I., Elareer, N. R., Junejo, K., Steinhoff, M., Uddin, S. (2019). Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells, 8. https://doi.org/10.3390/cells8080840.

  160. Iwata, M. (1968). Study of serum lipids in infants. 1. Serum lipids in healthy infants].Nihon Shonika Gakkai Zasshi, 72, 1075–1081.

    CAS  PubMed  Google Scholar 

  161. Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. New England Journal of Medicine, 355, 1253–1261. https://doi.org/10.1056/NEJMra061808

    Article  CAS  PubMed  Google Scholar 

  162. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  163. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9, 265–273. https://doi.org/10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  165. Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15, 740–746. https://doi.org/10.1016/j.ceb.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  166. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558. https://doi.org/10.1016/j.ceb.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  167. Malanchi, I., Peinado, H., Kassen, D., Hussenet, T., Metzger, D., Chambon, P., Huber, M., Hohl, D., Cano, A., Birchmeier, W., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 452, 650–653. https://doi.org/10.1038/nature06835

    Article  ADS  CAS  PubMed  Google Scholar 

  168. Peacock, C. D., & Watkins, D. N. (2008). Cancer stem cells and the ontogeny of lung cancer. Journal of Clinical Oncology, 26, 2883–2889. https://doi.org/10.1200/jco.2007.15.2702

    Article  CAS  PubMed  Google Scholar 

  169. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wielenga, V. J., Smits, R., Korinek, V., Smit, L., Kielman, M., Fodde, R., Clevers, H., & Pals, S. T. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. American Journal of Pathology, 154, 515–523. https://doi.org/10.1016/s0002-9440(10)65297-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J., & Heeschen, C. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323. https://doi.org/10.1016/j.stem.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  172. Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6, 459–471. https://doi.org/10.1038/nrc1892

    Article  CAS  PubMed  Google Scholar 

  173. Coniglio, S. J., Zavarella, S., & Symons, M. H. (2008). Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Molecular and Cellular Biology, 28, 4162–4172. https://doi.org/10.1128/mcb.01532-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Boye, K., & Maelandsmo, G. M. (2010). S100A4 and metastasis: A small actor playing many roles. American Journal of Pathology, 176, 528–535. https://doi.org/10.2353/ajpath.2010.090526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sherbet, G. V., & Lakshmi, M. S. (1998). S100A4 (MTS1) calcium binding protein in cancer growth, invasion and metastasis. Anticancer Research, 18, 2415–2421.

    CAS  PubMed  Google Scholar 

  176. Feldner, J. C., & Brandt, B. H. (2002). Cancer cell motility–on the road from c-erbB-2 receptor steered signaling to actin reorganization. Experimental Cell Research, 272, 93–108. https://doi.org/10.1006/excr.2001.5385

    Article  CAS  PubMed  Google Scholar 

  177. Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., et al. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73, 1524–1535. https://doi.org/10.1158/0008-5472.Can-12-2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfør, K., Rofstad, E. K., & Mueller-Klieser, W. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Research, 60, 916–921.

    CAS  PubMed  Google Scholar 

  179. Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68, 3077–3080. https://doi.org/10.1158/0008-5472.Can-07-3293

    Article  CAS  PubMed  Google Scholar 

  180. Sureshbabu, S. K., Chaukar, D., & Chiplunkar, S. V. (2020). Hypoxia regulates the differentiation and anti-tumor effector functions of γδT cells in oral cancer. Clinical and Experimental Immunology, 201, 40–57. https://doi.org/10.1111/cei.13436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang, C., Samanta, D., Lu, H., Bullen, J. W., Zhang, H., Chen, I., He, X., & Semenza, G. L. (2016). Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 113, E2047-2056. https://doi.org/10.1073/pnas.1602883113

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  182. Cao, Z., Zheng, X., Yang, H., Li, S., Xu, F., Yang, X., & Wang, Y. (2020). Association of obesity status and metabolic syndrome with site-specific cancers: A population-based cohort study. British Journal of Cancer, 123, 1336–1344. https://doi.org/10.1038/s41416-020-1012-6

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ajduković, J. (2016). HIF-1–a big chapter in the cancer tale. Experimental Oncology, 38, 9–12.

    Article  PubMed  Google Scholar 

  184. Schito, L., & Semenza, G. L. (2016). Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer, 2, 758–770. https://doi.org/10.1016/j.trecan.2016.10.016

    Article  PubMed  Google Scholar 

  185. Mathieu, J., Zhang, Z., Zhou, W., Wang, A. J., Heddleston, J. M., Pinna, C. M., Hubaud, A., Stadler, B., Choi, M., Bar, M., et al. (2011). HIF induces human embryonic stem cell markers in cancer cells. Cancer Research, 71, 4640–4652. https://doi.org/10.1158/0008-5472.Can-10-3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lin, Y. T., & Wu, K. J. (2020). Epigenetic regulation of epithelial-mesenchymal transition: Focusing on hypoxia and TGF-β signaling. Journal of Biomedical Science, 27, 39. https://doi.org/10.1186/s12929-020-00632-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rankin, E. B., Nam, J. M., & Giaccia, A. J. (2016). Hypoxia: Signaling the metastatic cascade. Trends Cancer, 2, 295–304. https://doi.org/10.1016/j.trecan.2016.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hajizadeh, F., Okoye, I., Esmaily, M., Ghasemi Chaleshtari, M., Masjedi, A., Azizi, G., Irandoust, M., Ghalamfarsa, G., & Jadidi-Niaragh, F. (2019). Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sciences, 237, 116952. https://doi.org/10.1016/j.lfs.2019.116952

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, H., Lu, H., Xiang, L., Bullen, J. W., Zhang, C., Samanta, D., Gilkes, D. M., He, J., & Semenza, G. L. (2015). HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E6215-6223. https://doi.org/10.1073/pnas.1520032112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Thomas, S., Harding, M. A., Smith, S. C., Overdevest, J. B., Nitz, M. D., Frierson, H. F., Tomlins, S. A., Kristiansen, G., & Theodorescu, D. (2012). CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Research, 72, 5600–5612. https://doi.org/10.1158/0008-5472.Can-11-3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ohnishi, S., Maehara, O., Nakagawa, K., Kameya, A., Otaki, K., Fujita, H., Higashi, R., Takagi, K., Asaka, M., Sakamoto, N., et al. (2013). hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors. PLoS ONE, 8, e66255. https://doi.org/10.1371/journal.pone.0066255

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hashimoto, O., Shimizu, K., Semba, S., Chiba, S., Ku, Y., Yokozaki, H., & Hori, Y. (2011). Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1α-dependent manner in pancreatic cancer cells. Pathobiology, 78, 181–192. https://doi.org/10.1159/000325538

    Article  CAS  PubMed  Google Scholar 

  193. Chiu, D. K., Zhang, M. S., Tse, A. P., & Wong, C. C. (2019). Assessment of stabilization and activity of the HIFs important for hypoxia-induced signalling in cancer cells. Methods in Molecular Biology, 1928, 77–99. https://doi.org/10.1007/978-1-4939-9027-6_6

    Article  CAS  PubMed  Google Scholar 

  194. Soeda, A., Park, M., Lee, D., Mintz, A., Androutsellis-Theotokis, A., McKay, R. D., Engh, J., Iwama, T., Kunisada, T., Kassam, A. B., et al. (2009). Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene, 28, 3949–3959. https://doi.org/10.1038/onc.2009.252

    Article  CAS  PubMed  Google Scholar 

  195. Xiang, L., & Semenza, G. L. (2019). Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Advances in Cancer Research, 141, 175–212. https://doi.org/10.1016/bs.acr.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  196. Porta, C., Paglino, C., & Mosca, A. (2014). Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in Oncology, 4, 64. https://doi.org/10.3389/fonc.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  197. Li, H., Zeng, J., & Shen, K. (2014). PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Archives of Gynecology and Obstetrics, 290, 1067–1078. https://doi.org/10.1007/s00404-014-3377-3

    Article  CAS  PubMed  Google Scholar 

  198. Tapia, O., Riquelme, I., Leal, P., Sandoval, A., Aedo, S., Weber, H., Letelier, P., Bellolio, E., Villaseca, M., Garcia, P., et al. (2014). The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Archiv, 465, 25–33. https://doi.org/10.1007/s00428-014-1588-4

    Article  CAS  PubMed  Google Scholar 

  199. Honjo, S., Ajani, J. A., Scott, A. W., Chen, Q., Skinner, H. D., Stroehlein, J., Johnson, R. L., & Song, S. (2014). Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. International Journal of Oncology, 45, 567–574. https://doi.org/10.3892/ijo.2014.2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mohammed, A., Janakiram, N. B., Brewer, M., Ritchie, R. L., Marya, A., Lightfoot, S., Steele, V. E., & Rao, C. V. (2013). Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol, 6, 649–659. https://doi.org/10.1593/tlo.13556

    Article  PubMed  PubMed Central  Google Scholar 

  201. Chang, L., Graham, P. H., Hao, J., Ni, J., Bucci, J., Cozzi, P. J., Kearsley, J. H., & Li, Y. (2013). Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death & Disease, 4, e875. https://doi.org/10.1038/cddis.2013.407

    Article  CAS  Google Scholar 

  202. Zhou, J., Wulfkuhle, J., Zhang, H., Gu, P., Yang, Y., Deng, J., Margolick, J. B., Liotta, L. A., Petricoin, E., 3rd., & Zhang, Y. (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 104, 16158–16163. https://doi.org/10.1073/pnas.0702596104

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  203. Douville, J., Beaulieu, R., & Balicki, D. (2009). ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev, 18, 17–25. https://doi.org/10.1089/scd.2008.0055

    Article  CAS  PubMed  Google Scholar 

  204. Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., Fields, J. Z., Wicha, M. S., & Boman, B. M. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389. https://doi.org/10.1158/0008-5472.Can-08-4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Nishitani, S., Horie, M., Ishizaki, S., & Yano, H. (2013). Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS ONE, 8, e82346. https://doi.org/10.1371/journal.pone.0082346

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sunayama, J., Matsuda, K., Sato, A., Tachibana, K., Suzuki, K., Narita, Y., Shibui, S., Sakurada, K., Kayama, T., Tomiyama, A., et al. (2010). Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells, 28, 1930–1939. https://doi.org/10.1002/stem.521

    Article  CAS  PubMed  Google Scholar 

  207. Bleau, A. M., Hambardzumyan, D., Ozawa, T., Fomchenko, E. I., Huse, J. T., Brennan, C. W., & Holland, E. C. (2009). PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell, 4, 226–235. https://doi.org/10.1016/j.stem.2009.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was parcially supported by Start-up from Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, and NIH grants (SC1GM139727, R01 CA210192, and R01 CA206069). Authors thank the CPRIT (RP210180 and RP230419) and UT-System Start Award facilities. Authors thank Ms. Anyssa Rodriguez and Ms. Molly K. Vela for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the idea: S.M., M.S1. and S.C.C; Writing Original draft preparation: S.M., and M.S1; Supervision: S.C.C; Proofreading and editing: S.M, M.S1., S.C.C., S.K., A.D., M.M.Y., M.W., E.C., M.J., and M.S2. All authors have reviewed and given their approval to the final manuscript.

Corresponding author

Correspondence to Subhash C. Chauhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shabnam Malik and Mohammed Sikander contributed equally to this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S., Sikander, M., Wahid, M. et al. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10177-8

Keywords

Navigation