Skip to main content

Advertisement

Log in

Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This is a review article and no data has been used.

References

  1. Zeng, S., et al. (2019). Chemoresistance in Pancreatic Cancer. International Journal of Molecular Sciences, 20(18), 4504.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahib, L., et al. (2014). Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921.

    CAS  PubMed  Google Scholar 

  3. Kamisawa, T., et al. (2016). Pancreatic cancer. Lancet, 388(10039), 73–85.

    CAS  PubMed  Google Scholar 

  4. Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World journal of oncology, 10(1), 10–27.

    PubMed  PubMed Central  Google Scholar 

  5. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30.

    PubMed  Google Scholar 

  6. Kleeff, J., et al. (2016). Pancreatic cancer. Nature reviews Disease primers, 2, 16022.

    PubMed  Google Scholar 

  7. Kaur, S., et al. (2017). A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: A multicenter study. The American Journal of Gastroenterology, 112(1), 172–183.

    CAS  PubMed  Google Scholar 

  8. Kaur, S., et al. (2012). Early diagnosis of pancreatic cancer: challenges and new developments. Biomarkers in Medicine, 6(5), 597–612.

    CAS  PubMed  Google Scholar 

  9. Papaefthymiou, A., Doukatas, A., & Galanopoulos, M. (2022). Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clinics and Research in Hepatology and Gastroenterology, 46(5), 101911.

    CAS  PubMed  Google Scholar 

  10. Kamimura, K., Yokoo, T., & Terai, S. (2018). Gene therapy for pancreatic diseases: current status. International journal of molecular sciences, 19(11), 3415.

    PubMed  PubMed Central  Google Scholar 

  11. Hu, C., et al. (2018). Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. Jama, 319(23), 2401–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Magliano, M. P., & Logsdon, C. D. J. G. (2013). Roles for KRAS in pancreatic tumor development and progression. Gastroenterology, 144(6), 1220–1229.

    PubMed  Google Scholar 

  13. Gleeson, F. C., et al. (2016). Targeted next generation sequencing of endoscopic ultrasound acquired cytology from ampullary and pancreatic adenocarcinoma has the potential to aid patient stratification for optimal therapy selection. Oncotarget, 7(34), 54526.

    PubMed  PubMed Central  Google Scholar 

  14. Wang, S., et al. (2020). Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. American Journal of Cancer Research, 10(7), 1937–1953.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, S., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, D., et al. (2022). SEMA3C supports pancreatic cancer progression by regulating the autophagy process and tumor immune microenvironment. Frontiers in Oncology, 12, 890154.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, M., et al. (2022). IPO7 promotes pancreatic cancer progression via regulating ERBB pathway. Clinics (São Paulo, Brazil), 77, 100044.

    PubMed  Google Scholar 

  18. Cao, J. Z., et al. (2022). UBE2C promotes the progression of pancreatic cancer and glycolytic activity via EGFR stabilization-mediated PI3K-Akt pathway activation. Journal of gastrointestinal oncology, 13(3), 1444–1453.

    PubMed  PubMed Central  Google Scholar 

  19. Wen, Z., et al. (2022). COL10A1-DDR2 axis promotes the progression of pancreatic cancer by regulating MEK/ERK signal transduction. Frontiers in Oncology, 12, 1049345.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J., et al. (2022). HOXA10 promote pancreatic cancer progression via directly activating canonical NF-κB signaling pathway. Carcinogenesis, 43(8), 787–796.

    CAS  PubMed  Google Scholar 

  21. Song, Y., Gao, Z., & Zheng, C. (2022). Silencing LINC01234 represses pancreatic cancer progression by inhibiting the malignant phenotypes of pancreatic cancer cells. Immunobiology, 227(6), 152295.

    CAS  PubMed  Google Scholar 

  22. Shi, J., et al. (2022). JNK inhibitor IX restrains pancreatic cancer through p53 and p21. Frontiers in Oncology, 12, 1006131.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nimmakayala, R. K., et al. (2022). PAF1 cooperates with YAP1 in metaplastic ducts to promote pancreatic cancer. Cell Death & Disease, 13(10), 839.

    CAS  Google Scholar 

  24. Park, S. J., et al. (2023). Enhanced glutaminolysis drives hypoxia-induced chemoresistance in pancreatic cancer. Cancer Research, 83(5), 735–752.

    CAS  PubMed  Google Scholar 

  25. Liu, H., et al. (2023). Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Letters, 555, 216040.

    CAS  PubMed  Google Scholar 

  26. Huang, C. K., et al. (2023). ENO1 promotes immunosuppression and tumor growth in pancreatic cancer. Clinical & Translational Oncology, 25(7), 2250–2264.

    CAS  Google Scholar 

  27. Wu, J. (2022). Pancreatic cancer-derived exosomes promote the proliferation, invasion, and metastasis of pancreatic cancer by the miR-3960/TFAP2A Axis. Journal of Oncology, 2022, 3590326.

    PubMed  PubMed Central  Google Scholar 

  28. Zhang, W., et al. (2022). Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death & Disease, 13(7), 630.

    CAS  Google Scholar 

  29. Jacoberger-Foissac, C., et al. (2023). CD73 Inhibits cGAS-STING and cooperates with CD39 to promote pancreatic cancer. Cancer Immunology Research, 11(1), 56–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Simmler, P., et al. (2022). SF3B1 facilitates HIF1-signaling and promotes malignancy in pancreatic cancer. Cell Reports, 40(8), 111266.

    CAS  PubMed  Google Scholar 

  31. Lee, M. S., et al. (2023). Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature, 616(7956), 339–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lefler, J. E., et al. (2022). STAT3 in tumor fibroblasts promotes an immunosuppressive microenvironment in pancreatic cancer. Life Science Alliance, 5(11), 1.

    Google Scholar 

  33. Su, H., et al. (2022). Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome. Nature, 610(7931), 366–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rademaker, G., et al. (2022). Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biology, 53, 102324.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lan, L., et al. (2022). GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature, 607(7917), 163–168.

    CAS  PubMed  Google Scholar 

  36. Wang, S., et al. (2022). RNA-binding proteins and cancer metastasis. In Seminars in Cancer Biology. Elsevier.

    Google Scholar 

  37. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The'seed and soil'hypothesis revisited. Nature reviews cancer, 3(6), 453–458.

    CAS  PubMed  Google Scholar 

  38. Chambers, A. F., Groom, A. C., & MacDonald, I. C. J. N. R. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    CAS  PubMed  Google Scholar 

  39. Polyak, K., & Weinberg, R. A. J. N. R. C. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265–273.

    CAS  PubMed  Google Scholar 

  40. Bakir, B., et al. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in cell biology, 30(10), 764–776.

    PubMed  PubMed Central  Google Scholar 

  41. Yang, Y., & Cao, Y. (2022). The impact of VEGF on cancer metastasis and systemic disease. In Seminars in Cancer Biology. Elsevier.

    Google Scholar 

  42. Friedl, P., & Alexander, S. J. C. (2011). Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell, 147(5), 992–1009.

    CAS  PubMed  Google Scholar 

  43. Sun, X., et al. (2022). Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut, 71(1), 129–147.

    CAS  PubMed  Google Scholar 

  44. Yang, Y., et al. (2016). The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature communications, 7(1), 11385.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y., et al. (2022). METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nature Communications, 13(1), 6350.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Delaunay, S., et al. (2022). Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 607(7919), 593–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Du, Q., et al. (2022). FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell Death & Disease, 13(5), 488.

    CAS  Google Scholar 

  48. Liu, W., et al. (2022). MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3. Oncogene, 41(41), 4606–4617.

    CAS  PubMed  Google Scholar 

  49. Meng, Q., et al. (2022). Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene, 41(32), 3912–3924.

    CAS  PubMed  Google Scholar 

  50. Li, F., et al. (2022). Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis. Signal Transduction and Targeted Therapy, 7(1), 264.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Verma, A., et al. (2022). EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nature Communications, 13(1), 7344.

    PubMed  PubMed Central  Google Scholar 

  52. Mirzaei, S., et al. (2023). Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. Environmental Research231(Part 1), 116115.

  53. Ashrafizadeh, M., et al. (2020). Association of the epithelial–mesenchymal transition (EMT) with cisplatin resistance. International journal of molecular sciences, 21(11), 4002.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ashrafizadeh, M., et al. (2021). New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomedicine & Pharmacotherapy, 141, 111824.

    CAS  Google Scholar 

  55. Recouvreux, M. V., et al. (2020). Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. The Journal of Experimental Medicine, 217(9), 1.

    Google Scholar 

  56. Sheng, W., et al. (2020). Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. Journal of Experimental & Clinical Cancer Research, 39(1), 16.

    CAS  Google Scholar 

  57. Sheng, W., et al. (2017). Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death & Disease, 8(10), e3147.

    CAS  Google Scholar 

  58. Chen, Y., et al. (2020). FAM172A inhibits EMT in pancreatic cancer via ERK-MAPK signaling. Biology open, 9(2), bio048462.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu, X., et al. (2021). Downregulation of NEAT1 sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine through modulation of the miR-506-3p/ZEB2/EMT axis. American Journal of Cancer Research, 11(8), 3841–3856.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Simeonov, K. P., et al. (2021). Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell, 39(8), 1150–1162.e9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, X., et al. (2022). MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death & Disease, 13(11), 923.

    CAS  Google Scholar 

  62. Li, N., et al. (2018). Emodin inhibits pancreatic cancer EMT and invasion by up-regulating microRNA-1271. Molecular Medicine Reports, 18(3), 3366–3374.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, L., et al. (2019). Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. International Journal of Oncology, 54(1), 98–110.

    CAS  PubMed  Google Scholar 

  64. Liu, F., et al. (2019). SMARCAD1 promotes pancreatic cancer cell growth and metastasis through Wnt/β-catenin-mediated EMT. International Journal of Biological Sciences, 15(3), 636–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng, X., et al. (2022). Calpain2 upregulation regulates EMT-mediated pancreatic cancer metastasis via the Wnt/β-catenin Signaling Pathway. Frontiers of medicine (Lausanne), 9, 783592.

    Google Scholar 

  66. Tan, J., et al. (2014). Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicology Letters, 224(1), 7–15.

    CAS  PubMed  Google Scholar 

  67. Yang, R. M., et al. (2017). miR-3656 expression enhances the chemosensitivity of pancreatic cancer to gemcitabine through modulation of the RHOF/EMT axis. Cell Death & Disease, 8(10), e3129.

    CAS  Google Scholar 

  68. Li, Y., et al. (2019). Oncolytic Ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Letters, 459, 15–29.

    CAS  PubMed  Google Scholar 

  69. Okada, Y., et al. (2021). LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma. Carcinogenesis, 42(4), 546–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. An, N., & Zheng, B. (2020). MiR-203a-3p inhibits pancreatic cancer cell proliferation, EMT, and apoptosis by regulating SLUG. Technology in Cancer Research & Treatment, 19, 1533033819898729.

    CAS  Google Scholar 

  71. Chen, L., et al. (2022). ATP11A promotes EMT by regulating Numb PRR(L) in pancreatic cancer cells. PeerJ, 10, e13172.

    PubMed  PubMed Central  Google Scholar 

  72. Yu, S., et al. (2021). Circ_0092367 Inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis. Genes (Basel), 12(11), 1701.

    CAS  PubMed  Google Scholar 

  73. Zhao, Y., et al. (2021). Targeted intervention of eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells via c-MYC/miR-9 signaling. Cancer Cell International, 21(1), 670.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu, W., et al. (2019). IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling. Scientific Reports, 9(1), 7539.

    PubMed  PubMed Central  Google Scholar 

  75. Wang, W., et al. (2018). E-cadherin is downregulated by microenvironmental changes in pancreatic cancer and induces EMT. Oncology Reports, 40(3), 1641–1649.

    CAS  PubMed  Google Scholar 

  76. Garg, R., et al. (2022). Targeting FTO suppresses pancreatic carcinogenesis via regulating stem cell maintenance and EMT pathway. Cancers (Basel), 14(23), 5919.

    CAS  PubMed  Google Scholar 

  77. Santoro, R., et al. (2018). MEKK3 Sustains EMT and Stemness in Pancreatic Cancer by Regulating YAP and TAZ Transcriptional Activity. Anticancer Research, 38(4), 1937–1946.

    CAS  PubMed  Google Scholar 

  78. Li, W., et al. (2020). Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncology Reports, 44(1), 382–392.

    CAS  PubMed  Google Scholar 

  79. Sheng, W., et al. (2020). Calreticulin promotes EMT in pancreatic cancer via mediating Ca(2+) dependent acute and chronic endoplasmic reticulum stress. Journal of Experimental & Clinical Cancer Research, 39(1), 209.

    CAS  Google Scholar 

  80. Yan, T., et al. (2017). Astaxanthin inhibits gemcitabine-resistant human pancreatic cancer progression through EMT inhibition and gemcitabine resensitization. Oncology Letters, 14(5), 5400–5408.

    PubMed  PubMed Central  Google Scholar 

  81. Weadick, B., et al. (2021). EMT-induced gemcitabine resistance in pancreatic cancer involves the functional loss of equilibrative nucleoside transporter 1. Molecular Cancer Therapeutics, 20(2), 410–422.

    CAS  PubMed  Google Scholar 

  82. Zhu, S., et al. (2017). ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca(2+)/RhoA pathway. Cell Death & Disease, 8(5), e2806.

    CAS  Google Scholar 

  83. Shi, C., et al. (2021). NUDCD1 knockdown inhibits the proliferation, migration, and invasion of pancreatic cancer via the EMT process. Aging (Albany NY), 13(14), 18298–18309.

    CAS  PubMed  Google Scholar 

  84. Zhang, Z., et al. (2017). miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomedicine & Pharmacotherapy, 96, 1341–1348.

    CAS  Google Scholar 

  85. Rumman, M., et al. (2016). HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer. Oncotarget, 7(47), 78029–78047.

    PubMed  PubMed Central  Google Scholar 

  86. Shen, J., et al. (2019). LncRNA XIST promotes pancreatic cancer migration, invasion and EMT by sponging miR-429 to modulate ZEB1 expression. The International Journal of Biochemistry & Cell Biology, 113, 17–26.

    CAS  Google Scholar 

  87. Zhang, R., et al. (2021). Silencing of circRNA circ_0001666 represses EMT in pancreatic cancer through upregulating miR-1251 and downregulating SOX4. Frontiers in Molecular Biosciences, 8, 684866.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y., et al. (2019). Upregulation of LASP2 inhibits pancreatic cancer cell migration and invasion through suppressing TGF-β-induced EMT. Journal of Cellular Biochemistry, 120(8), 13651–13657.

    CAS  PubMed  Google Scholar 

  89. Bhutia, Y. D., et al. (2020). Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian Journal of Pharmaceutical Sciences, 15(2), 237–251.

    PubMed  PubMed Central  Google Scholar 

  90. Li, P., et al. (2020). FHL3 promotes pancreatic cancer invasion and metastasis through preventing the ubiquitination degradation of EMT associated transcription factors. Aging (Albany NY), 12(1), 53–69.

    CAS  PubMed  Google Scholar 

  91. Zhang, L., et al. (2016). CCL21/CCR7 axis contributed to CD133+ pancreatic cancer stem-like cell metastasis via EMT and Erk/NF-κB pathway. PLoS One, 11(8), e0158529.

    PubMed  PubMed Central  Google Scholar 

  92. Zhao, H., et al. (2017). Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. Journal of Cellular and Molecular Medicine, 21(9), 2055–2067.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martinelli, P., et al. (2017). GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 66(9), 1665–1676.

    CAS  PubMed  Google Scholar 

  94. Gao, C., et al. (2021). Yap1-2 Isoform Is the Primary Mediator in TGF-β1 Induced EMT in Pancreatic Cancer. Frontiers in Oncology, 11, 649290.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baer, R., et al. (2014). Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α. Genes & Development, 28(23), 2621–2635.

    Google Scholar 

  96. Sancho, P., et al. (2015). MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabolism, 22(4), 590–605.

    CAS  PubMed  Google Scholar 

  97. Zhao, S., et al. (2016). CD44 expression level and isoform contributes to pancreatic cancer cell plasticity, invasiveness, and response to therapy. Clinical Cancer Research, 22(22), 5592–5604.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Suzuki, K., et al. (2017). Metadherin promotes metastasis by supporting putative cancer stem cell properties and epithelial plasticity in pancreatic cancer. Oncotarget, 8(39), 66098–66111.

    PubMed  PubMed Central  Google Scholar 

  99. Cruz, V. H., et al. (2019). Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight, 5(9), e126117.

    PubMed  Google Scholar 

  100. Kirane, A., et al. (2015). Warfarin blocks Gas6-mediated Axl activation required for pancreatic cancer epithelial plasticity and metastasis. Cancer Research, 75(18), 3699–3705.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feldmann, K., et al. (2021). Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology. Gastroenterology, 160(1), 346–361.e24.

    CAS  PubMed  Google Scholar 

  102. Perusina Lanfranca, M., et al. (2020). Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology, 158(5), 1417–1432.e11.

    CAS  PubMed  Google Scholar 

  103. Sharma, N., et al. (2020). Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer and Metabolism, 8, 19.

    PubMed  PubMed Central  Google Scholar 

  104. Yi, Z., et al. (2022). KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Noncanonical Activin Pathway. Cellular and Molecular Gastroenterology and Hepatology, 13(2), 643–667.

    CAS  PubMed  Google Scholar 

  105. Singh, S. K., et al. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO Journal, 34(4), 517–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, M., et al. (2021). Zinc-Dependent regulation of ZEB1 and YAP1 coactivation promotes epithelial-mesenchymal transition plasticity and metastasis in pancreatic cancer. Gastroenterology, 160(5), 1771–1783.e1.

    CAS  PubMed  Google Scholar 

  107. Krebs, A. M., et al. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529.

    CAS  PubMed  Google Scholar 

  108. Kloesch, B., et al. (2022). A GATA6-centred gene regulatory network involving HNFs and ΔNp63 controls plasticity and immune escape in pancreatic cancer. Gut, 71(4), 766–777.

    CAS  PubMed  Google Scholar 

  109. Nishino, H., et al. (2017). Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Medicine, 6(11), 2686–2696.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Raghavan, S., et al. (2021). Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 184(25), 6119–6137.e26.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ireland, L., et al. (2020). Blockade of Stromal Gas6 Alters Cancer Cell Plasticity, Activates NK Cells, and Inhibits Pancreatic Cancer Metastasis. Frontiers in Immunology, 11, 297.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Datta, J., et al. (2022). Combined MEK and STAT3 inhibition uncovers stromal plasticity by enriching for cancer-associated fibroblasts with mesenchymal stem cell-like features to overcome immunotherapy resistance in pancreatic cancer. Gastroenterology, 163(6), 1593–1612.

    CAS  PubMed  Google Scholar 

  113. Cao, R., et al. (2020). miR-3613-5p enhances the metastasis of pancreatic cancer by targeting CDK6. Cell Cycle, 19(22), 3086–3095.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, Z., et al. (2018). MiR-1297 suppresses pancreatic cancer cell proliferation and metastasis by targeting MTDH. Molecular and Cellular Probes, 40, 19–26.

    CAS  PubMed  Google Scholar 

  115. Wu, X., et al. (2018). MiR-216b inhibits pancreatic cancer cell progression and promotes apoptosis by down-regulating KRAS. Archives of Medical Science, 14(6), 1321–1332.

    CAS  PubMed  Google Scholar 

  116. Zhang, D., et al. (2021). MiR-489-3p reduced pancreatic cancer proliferation and metastasis by targeting PKM2 and LDHA involving glycolysis. Frontiers in Oncology, 11, 651535.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ashrafizadeh, M., et al. (2023). Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Medicinal Research Reviewshttps://doi.org/10.1002/med.21950

  118. Mirzaei, S., et al. (2022). Molecular landscape of LncRNAs in prostate cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental & Clinical Cancer Research, 41(1), 214.

    CAS  Google Scholar 

  119. Luo, Y., et al. (2020). LncRNA DANCR promotes proliferation and metastasis in pancreatic cancer by regulating miRNA-33b. FEBS Open Bio, 10(1), 18–27.

    CAS  PubMed  Google Scholar 

  120. Hui, B., et al. (2019). RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death & Disease, 10(3), 207.

    Google Scholar 

  121. Feng, Y., et al. (2020). LncRNA NEAT1 facilitates pancreatic cancer growth and metastasis through stabilizing ELF3 mRNA. American Journal of Cancer Research, 10(1), 237–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ren, X., et al. (2020). lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer. Molecular Cancer, 19(1), 35.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shen, X., et al. (2021). Identification of Circ_001569 as a Potential biomarker in the diagnosis and prognosis of pancreatic cancer. Technology in Cancer Research & Treatment, 20, 1533033820983302.

    CAS  Google Scholar 

  124. Zhang, J., et al. (2023). Circ_0000284 upregulates RHPN2 to facilitate pancreatic cancer proliferation, metastasis, and angiogenesis through sponging miR-1179. Journal of Biochemical and Molecular Toxicology, 37(3), e23274.

    CAS  PubMed  Google Scholar 

  125. Li, C., et al. (2023). Downregulation of circ-STK39 suppresses pancreatic cancer progression by sponging mir-140-3p and regulating TRAM2-mediated epithelial-mesenchymal transition. Apoptosis, 28, 1024–1034.

    CAS  PubMed  Google Scholar 

  126. Li, M., et al. (2020). miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. American Journal of Cancer Research, 10(1), 38–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mody, H. R., et al. (2017). miR-202 Diminishes TGFβ Receptors and Attenuates TGFβ1-Induced EMT in Pancreatic Cancer. Molecular Cancer Research, 15(8), 1029–1039.

    CAS  PubMed  Google Scholar 

  128. Jiang, J., et al. (2015). Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget, 6(5), 2767–2778.

    PubMed  Google Scholar 

  129. Wu, X., et al. (2016). MiR-200a suppresses the proliferation and metastasis in pancreatic ductal adenocarcinoma through downregulation of DEK Gene. Translational Oncology, 9(1), 25–31.

    PubMed  PubMed Central  Google Scholar 

  130. Hu, Y., et al. (2012). miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway. Tumour Biology, 33(6), 1863–1870.

    CAS  PubMed  Google Scholar 

  131. Chen, Y., et al. (2019). MicroRNA hsa-miR-623 directly suppresses MMP1 and attenuates IL-8-induced metastasis in pancreatic cancer. International Journal of Oncology, 55(1), 142–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ma, L., et al. (2019). The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell International, 19, 248.

    PubMed  PubMed Central  Google Scholar 

  133. Wang, L., Mu, N., & Qu, N. (2021). Methylation of the miR-29b-3p promoter contributes to angiogenesis, invasion, and migration in pancreatic cancer. Oncology Reports, 45(1), 65–72.

    PubMed  PubMed Central  Google Scholar 

  134. Ma, C., et al. (2014). miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1. Journal of Experimental & Clinical Cancer Research, 33(1), 54.

    Google Scholar 

  135. Xue, L., et al. (2020). miR-539 suppresses the proliferation, migration, invasion and epithelial mesenchymal transition of pancreatic cancer cells through targeting SP1. International Journal of Molecular Medicine, 45(6), 1771–1782.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hiramoto, H., et al. (2017). miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Scientific Reports, 7(1), 4002.

    PubMed  PubMed Central  Google Scholar 

  137. Deng, S. J., et al. (2018). Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene, 37(44), 5811–5828.

    CAS  PubMed  Google Scholar 

  138. Cheng, C., et al. (2022). Positive feedback regulation of lncRNA TPT1-AS1 and ITGB3 promotes cell growth and metastasis in pancreatic cancer. Cancer Science, 113(9), 2986–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lou, S., et al. (2019). Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochimica et Biophysica Sinica Shanghai, 51(8), 814–825.

    CAS  Google Scholar 

  140. Cui, X. P., et al. (2019). LncRNA TP73-AS1 sponges miR-141-3p to promote the migration and invasion of pancreatic cancer cells through the up-regulation of BDH2. Bioscience Reports, 39(3), BSR20181937.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, W., et al. (2020). A novel lncRNA PTTG3P/miR-132/212-3p/FoxM1 feedback loop facilitates tumorigenesis and metastasis of pancreatic cancer. Cell death discovery, 6(1), 136.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. An, Y., et al. (2018). LncRNA DLX6-AS1 promoted cancer cell proliferation and invasion by attenuating the endogenous function of miR-181b in pancreatic cancer. Cancer Cell International, 18, 143.

    PubMed  PubMed Central  Google Scholar 

  143. Liu, B., et al. (2018). lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer. Molecular Therapy--Nucleic Acids, 13, 472–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gu, L., et al. (2017). lncRNA MEG3 had anti-cancer effects to suppress pancreatic cancer activity. Biomedicine & Pharmacotherapy, 89, 1269–1276.

    CAS  Google Scholar 

  145. Liu, S., et al. (2019). LncRNA SNHG16 promotes tumor growth of pancreatic cancer by targeting miR-218-5p. Biomedicine & Pharmacotherapy, 114, 108862.

    CAS  Google Scholar 

  146. Deng, P. C., et al. (2019). LncRNA SNHG14 potentiates pancreatic cancer progression via modulation of annexin A2 expression by acting as a competing endogenous RNA for miR-613. Journal of Cellular and Molecular Medicine, 23(11), 7222–7232.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Huang, S., et al. (2021). LncRNA PWAR6 regulates proliferation and migration by epigenetically silencing YAP1 in tumorigenesis of pancreatic ductal adenocarcinoma. Journal of Cellular and Molecular Medicine, 25(9), 4275–4286.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, S., et al. (2020). LncRNA STXBP5-AS1 suppresses stem cell-like properties of pancreatic cancer by epigenetically inhibiting neighboring androglobin gene expression. Clinical Epigenetics, 12(1), 168.

    PubMed  PubMed Central  Google Scholar 

  149. Cai, J., et al. (2021). Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells. Molecular Medicine Reports, 23(1), 1.

    Google Scholar 

  150. Zhou, M., et al. (2022). LncRNA FAM83H-AS1 promotes the malignant progression of pancreatic ductal adenocarcinoma by stabilizing FAM83H mRNA to protect β-catenin from degradation. Journal of Experimental & Clinical Cancer Research, 41(1), 288.

    CAS  Google Scholar 

  151. Cai, H., et al. (2017). LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget, 8(20), 32905–32917.

    PubMed  PubMed Central  Google Scholar 

  152. Miao, H., et al. (2021). LncRNA TP73-AS1 enhances the malignant properties of pancreatic ductal adenocarcinoma by increasing MMP14 expression through miRNA -200a sponging. Journal of Cellular and Molecular Medicine, 25(7), 3654–3664.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, X., et al. (2020). Circ_0075829 facilitates the progression of pancreatic carcinoma by sponging miR-1287-5p and activating LAMTOR3 signalling. Journal of Cellular and Molecular Medicine, 24(24), 14596–14607.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Xing, C., et al. (2019). Circular RNA ADAM9 facilitates the malignant behaviours of pancreatic cancer by sponging miR-217 and upregulating PRSS3 expression. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 3920–3928.

    CAS  PubMed  Google Scholar 

  155. Wang, K. Q., et al. (2022). Circular RNA fibroblast growth factor receptor 1 promotes pancreatic cancer progression by targeting microRNA-532-3p/PIK3CB Axis. Pancreas, 51(8), 930–942.

    CAS  PubMed  Google Scholar 

  156. Messex, J. K., et al. (2022). Oncogenic Kras-mediated cytokine CCL15 regulates pancreatic cancer cell migration and invasion through ROS. Cancers (Basel), 14(9), 2153.

    CAS  PubMed  Google Scholar 

  157. Deng, J., et al. (2022). High Glucose promotes pancreatic ductal adenocarcinoma gemcitabine resistance and invasion through modulating ROS/MMP-3 signaling pathway. Oxidative Medicine and Cellular Longevity, 2022, 3243647.

    PubMed  PubMed Central  Google Scholar 

  158. Binker-Cosen, M. J., et al. (2017). Palmitic acid increases invasiveness of pancreatic cancer cells AsPC-1 through TLR4/ROS/NF-κB/MMP-9 signaling pathway. Biochemical and Biophysical Research Communications, 484(1), 152–158.

    CAS  PubMed  Google Scholar 

  159. Shimojo, Y., et al. (2013). Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clinical & Experimental Metastasis, 30(2), 143–154.

    CAS  Google Scholar 

  160. Wörmann, S. M., et al. (2021). APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. Nature Cancer, 2(12), 1338–1356.

    PubMed  Google Scholar 

  161. Zhao, T., et al. (2020). IL-37/ STAT3/ HIF-1α negative feedback signaling drives gemcitabine resistance in pancreatic cancer. Theranostics, 10(9), 4088–4100.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hu, H., et al. (2020). MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis, 41(4), 502–514.

    CAS  PubMed  Google Scholar 

  163. Huang, C., et al. (2011). STAT3-targeting RNA interference inhibits pancreatic cancer angiogenesis in vitro and in vivo. International Journal of Oncology, 38(6), 1637–1644.

    CAS  PubMed  Google Scholar 

  164. Fofaria, N. M., & Srivastava, S. K. (2015). STAT3 induces anoikis resistance, promotes cell invasion and metastatic potential in pancreatic cancer cells. Carcinogenesis, 36(1), 142–150.

    CAS  PubMed  Google Scholar 

  165. Chen, H., et al. (2023). Selectively Targeting STAT3 Using a Small Molecule Inhibitor is a Potential Therapeutic Strategy for Pancreatic Cancer. Clinical Cancer Research, 29(4), 815–830.

    CAS  PubMed  Google Scholar 

  166. Li, H., et al. (2011). STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS One, 6(10), e25941.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, Y., Zhang, Y., & Liu, J. (2019). NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway. Cancer Management and Research, 11, 5147–5156.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hu, B., et al. (2016). HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer. Cancer Letters, 376(2), 387–398.

    CAS  PubMed  Google Scholar 

  169. Zuo, C., et al. (2018). Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3 / NF-kB and L1CAM activities. Pancreatology, 18(3), 328–333.

    CAS  PubMed  Google Scholar 

  170. Lian, J., et al. (2020). Ubiquitin specific peptidase 5 enhances STAT3 signaling and promotes migration and invasion in Pancreatic Cancer. Journal of Cancer, 11(23), 6802–6811.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Chen, J., et al. (2016). Interleukin-32α inactivates JAK2/STAT3 signaling and reverses interleukin-6-induced epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer cells. Oncotargets and Therapy, 9, 4225–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, Z., et al. (2019). BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Letters, 449, 215–225.

    CAS  PubMed  Google Scholar 

  173. Chang, Y. T., et al. (2023). Pancreatic cancer-derived small extracellular vesical ezrin activates fibroblasts to exacerbate cancer metastasis through STAT3 and YAP-1 signaling pathways. Molecular Oncologyhttps://doi.org/10.1002/1878-0261.13442

  174. Liu, L., et al. (2019). Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary & Pancreatic Diseases International, 18(6), 580–586.

    CAS  Google Scholar 

  175. Guo, Y., et al. (2021). The anti-dysenteric drug fraxetin enhances anti-tumor efficacy of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation. Aging (Albany NY), 13(14), 18545–18563.

    CAS  PubMed  Google Scholar 

  176. Al-Ismaeel, Q., et al. (2019). ZEB1 and IL-6/11-STAT3 signalling cooperate to define invasive potential of pancreatic cancer cells via differential regulation of the expression of S100 proteins. British Journal of Cancer, 121(1), 65–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Su, K., et al. (2023). Solasodine suppresses the metastasis of gastric cancer through claudin-2 via the AMPK/STAT3/NF-κB pathway. Chemico-Biological Interactions, 379, 110520.

    CAS  PubMed  Google Scholar 

  178. Huang, C., et al. (2013). Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncology Reports, 30(3), 1223–1230.

    CAS  PubMed  Google Scholar 

  179. Zhao, G., et al. (2013). MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One, 8(9), e73803.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Wei, D., et al. (2003). Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene, 22(3), 319–329.

    CAS  PubMed  Google Scholar 

  181. Zhao, S., et al. (2008). Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Research, 68(11), 4221–4228.

    CAS  PubMed  Google Scholar 

  182. Sasaki, N., et al. (2022). Gp130-Mediated STAT3 Activation contributes to the aggressiveness of pancreatic cancer through H19 long non-coding RNA expression. Cancers (Basel), 14(9), 2055.

    CAS  PubMed  Google Scholar 

  183. Wu, Y. S., et al. (2017). Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochimica et Biophysica Acta - General Subjects, 1861(2), 296–306.

    CAS  PubMed  Google Scholar 

  184. Liu, M., et al. (2019). Hypoxia-induced feedback of HIF-1α and lncRNA-CF129 contributes to pancreatic cancer progression through stabilization of p53 protein. Theranostics, 9(16), 4795–4810.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Jin, Y., et al. (2021). Positive Reciprocal Feedback of lncRNA ZEB1-AS1 and HIF-1α contributes to hypoxia-promoted tumorigenesis and metastasis of pancreatic cancer. Frontiers in Oncology, 11, 761979.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Niu, Y., et al. (2018). MiRNA-646-mediated reciprocal repression between HIF-1α and MIIP contributes to tumorigenesis of pancreatic cancer. Oncogene, 37(13), 1743–1758.

    CAS  PubMed  Google Scholar 

  187. Yue, H., Liu, L., & Song, Z. (2019). miR-212 regulated by HIF-1α promotes the progression of pancreatic cancer. Experimental and Therapeutic Medicine, 17(3), 2359–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, L., et al. (2021). N2E4, a Monoclonal antibody targeting neuropilin-2, inhibits tumor growth and metastasis in pancreatic ductal adenocarcinoma via suppressing FAK/Erk/HIF-1α Signaling. Frontiers in Oncology, 11, 657008.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang, D., et al. (2016). β2-adrenogenic signaling regulates NNK-induced pancreatic cancer progression via upregulation of HIF-1α. Oncotarget, 7(14), 17760–17772.

    PubMed  Google Scholar 

  190. Zeng, Z., et al. (2019). LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics, 9(18), 5298–5314.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhu, G. H., et al. (2013). Hypoxia-induced snail expression through transcriptional regulation by HIF-1α in pancreatic cancer cells. Digestive Diseases and Sciences, 58(12), 3503–3515.

    CAS  PubMed  Google Scholar 

  192. Zhang, Q., et al. (2020). Expression of the PTEN/FOXO3a/PLZF signalling pathway in pancreatic cancer and its significance in tumourigenesis and progression. Investigational New Drugs, 38(2), 321–328.

    PubMed  Google Scholar 

  193. Gao, Z. Q., et al. (2017). Long non-coding RNA GAS5 suppresses pancreatic cancer metastasis through modulating miR-32-5p/PTEN axis. Cell & Bioscience, 7, 66.

    Google Scholar 

  194. Liu, Y., et al. (2020). Role of miR-92a-3p/PTEN axis in regulation of pancreatic cancer cell proliferation and metastasis. Zhong Nan Da Xue Xue Bao. Yi Xue Ban, 45(3), 280–289.

    PubMed  Google Scholar 

  195. Gu, J., et al. (2016). GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer. Cancer Letters, 380(2), 434–441.

    CAS  PubMed  Google Scholar 

  196. Wang, M. C., et al. (2016). Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study. Oncotarget, 7(8), 9586–9599.

    PubMed  PubMed Central  Google Scholar 

  197. Zhao, H., et al. (2014). Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway. Diabetes, Obesity and Metabolism, 16(9), 850–860.

    CAS  PubMed  Google Scholar 

  198. Fujita, M., et al. (2014). Nitric oxide increases the invasion of pancreatic cancer cells via activation of the PI3K-AKT and RhoA pathways after carbon ion irradiation. FEBS Letters, 588(17), 3240–3250.

    CAS  PubMed  Google Scholar 

  199. Li, H., et al. (2014). Effect of PTEN and KAI1 gene overexpression on the proliferation, metastasis and radiosensitivity of ASPC-1 pancreatic cancer cells under hypoxic conditions. Molecular Medicine Reports, 10(4), 1973–1977.

    CAS  PubMed  Google Scholar 

  200. Ma, J., et al. (2010). IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. The Journal of Surgical Research, 160(1), 90–101.

    CAS  PubMed  Google Scholar 

  201. Zhang, H., et al. (2019). MiR-132 promotes the proliferation, invasion and migration of human pancreatic carcinoma by inhibition of the tumor suppressor gene PTEN. Progress in Biophysics and Molecular Biology, 148, 65–72.

    CAS  PubMed  Google Scholar 

  202. Zhang, H., et al. (2019). Long non-coding RNA CASC2 upregulates PTEN to suppress pancreatic carcinoma cell metastasis by downregulating miR-21. Cancer Cell International, 19, 18.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wu, Y., et al. (2019). ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Experimental Cell Research, 379(1), 30–47.

    CAS  PubMed  Google Scholar 

  204. Zhu, J. H., et al. (2020). MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866(6), 165747.

    CAS  PubMed  Google Scholar 

  205. Li, W., et al. (2018). Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. International Journal of Oncology, 52(5), 1593–1602.

    CAS  PubMed  Google Scholar 

  206. Liu, X., et al. (2018). Phosphoglycerate Mutase 1 (PGAM1) Promotes pancreatic ductal adenocarcinoma (PDAC) Metastasis by acting as a novel downstream target of the PI3K/Akt/mTOR Pathway. Oncology Research, 26(7), 1123–1131.

    PubMed  PubMed Central  Google Scholar 

  207. Deng, J., et al. (2021). N(6) -methyladenosine-mediated upregulation of WTAPP1 promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Research, 81(20), 5268–5283.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Gokturk, F., Erkoc-Kaya, D., & Arikoglu, H. (2021). Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling. Bratislavské Lekárske Listy, 122(2), 132–137.

    CAS  PubMed  Google Scholar 

  209. Chen, T., et al. (2020). Linc00261 inhibits metastasis and the WNT signaling pathway of pancreatic cancer by regulating a miR-552-5p/FOXO3 axis. Oncology Reports, 43(3), 930–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Xu, D., et al. (2020). Cadherin 13 Inhibits Pancreatic Cancer Progression and Epithelial-mesenchymal Transition by Wnt/β-Catenin Signaling. Journal of Cancer, 11(8), 2101–2112.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Nielsen, M. F., Mortensen, M. B., & Detlefsen, S. (2016). Key players in pancreatic cancer-stroma interaction: Cancer-associated fibroblasts, endothelial and inflammatory cells. World Journal of Gastroenterology, 22(9), 2678–2700.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Hosein, A. N., Brekken, R. A., & Maitra, A. (2020). Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nature Reviews. Gastroenterology & Hepatology, 17(8), 487–505.

    Google Scholar 

  213. Veenstra, V. L., et al. (2018). ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis, 7(11), 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Cannon, A., et al. (2018). Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes & Cancer, 9(3-4), 78–86.

    CAS  Google Scholar 

  215. Schnittert, J., et al. (2019). Integrin α11 in pancreatic stellate cells regulates tumor stroma interaction in pancreatic cancer. The FASEB Journal, 33(5), 6609–6621.

    CAS  PubMed  Google Scholar 

  216. Goehrig, D., et al. (2019). Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut, 68(4), 693–707.

    CAS  PubMed  Google Scholar 

  217. Awaji, M., & Singh, R. K. (2019). Cancer-associated fibroblasts' functional heterogeneity in pancreatic ductal adenocarcinoma. Cancers (Basel), 11(3), 290.

    CAS  PubMed  Google Scholar 

  218. Sun, Q., et al. (2018). The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics, 8(18), 5072–5087.

    PubMed  PubMed Central  Google Scholar 

  219. Kobayashi, H., et al. (2019). Cancer-associated fibroblasts in gastrointestinal cancer. Nature Reviews. Gastroenterology & Hepatology, 16(5), 282–295.

    Google Scholar 

  220. Geleta, B., et al. (2022). Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. The Journal of Biological Chemistry, 298(3), 101608.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu, Q. Q., et al. (2016). Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway. Cancer Cell International, 16, 57.

    PubMed  PubMed Central  Google Scholar 

  222. Quan, M., et al. (2015). Merlin/NF2 suppresses pancreatic tumor growth and metastasis by attenuating the FOXM1-mediated Wnt/β-Catenin signaling. Cancer Research, 75(22), 4778–4789.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, F., Dai, L., & Niu, J. (2020). GPX2 silencing relieves epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer by downregulating Wnt pathway. Journal of Cellular Physiology, 235(11), 7780–7790.

    CAS  PubMed  Google Scholar 

  224. Garg, B., et al. (2017). Modulation of post-translational modifications in β-catenin and LRP6 inhibits Wnt signaling pathway in pancreatic cancer. Cancer Letters, 388, 64–72.

    CAS  PubMed  Google Scholar 

  225. Jiang, H., et al. (2014). Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. American Journal of Cancer Research, 4(5), 537–544.

    PubMed  PubMed Central  Google Scholar 

  226. Zhou, P., et al. (2019). NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene, 38(27), 5500–5515.

    CAS  PubMed  Google Scholar 

  227. Wang, L., et al. (2009). Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell, 15(3), 207–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Sun, Y., et al. (2019). Restoration of miRNA-148a in pancreatic cancer reduces invasion and metastasis by inhibiting the Wnt/β-catenin signaling pathway via downregulating maternally expressed gene-3. Experimental and Therapeutic Medicine, 17(1), 639–648.

    CAS  PubMed  Google Scholar 

  229. Zhang, Q., et al. (2017). Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer. Molecular Cancer, 16(1), 119.

    PubMed  PubMed Central  Google Scholar 

  230. Weng, Y. C., et al. (2019). Long non-coding RNA LINC01133 silencing exerts antioncogenic effect in pancreatic cancer through the methylation of DKK1 promoter and the activation of Wnt signaling pathway. Cancer Biology & Therapy, 20(3), 368–380.

    CAS  Google Scholar 

  231. Wu, X., et al. (2019). LncRNA BANCR promotes pancreatic cancer tumorigenesis via modulating MiR-195-5p/Wnt/β-catenin signaling pathway. Technology in Cancer Research & Treatment, 18, 1533033819887962.

    CAS  Google Scholar 

  232. Yang, Y., Bai, Y. S., & Wang, Q. (2017). CDGSH iron sulfur domain 2 activates proliferation and EMT of pancreatic cancer cells via Wnt/β-catenin pathway and has prognostic value in human pancreatic cancer. Oncology Research, 25(4), 605–615.

    PubMed  PubMed Central  Google Scholar 

  233. Kim, J. H., et al. (2022). Vitamin C suppresses pancreatic carcinogenesis through the inhibition of both glucose metabolism and Wnt signaling. International Journal of Molecular Sciences, 23(20), 12249.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhan, T., et al. (2020). miR-455-3p functions as a tumor suppressor by restraining Wnt/β-catenin signaling via TAZ in pancreatic cancer. Cancer Management and Research, 12, 1483–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Yang, J., et al. (2019). Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Management and Research, 11, 4209–4221.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang, Z., et al. (2008). Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. British Journal of Cancer, 99(10), 1695–1703.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Douchi, D., et al. (2015). Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/β-catenin signaling pathway. Cancer Letters, 365(1), 132–140.

    CAS  PubMed  Google Scholar 

  238. Ashrafizadeh, M., et al. (2022). Exosomes as promising nanostructures in diabetes mellitus: From insulin sensitivity to ameliorating diabetic complications. International Journal of Nanomedicine, 17, 1229–1253.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Paskeh, M. D. A., et al. (2022). Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology, 15(1), 1–39.

    Google Scholar 

  240. Li, J., et al. (2018). Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. Journal of Experimental & Clinical Cancer Research, 37(1), 177.

    Google Scholar 

  241. Yu, Z., et al. (2017). Pancreatic cancer-derived exosomes promote tumor metastasis and liver pre-metastatic niche formation. Oncotarget, 8(38), 63461–63483.

    PubMed  PubMed Central  Google Scholar 

  242. Tang, P., et al. (2019). Serum derived exosomes from pancreatic cancer patients promoted metastasis: An iTRAQ-based proteomic analysis. Oncotargets and Therapy, 12, 9329–9339.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Ogawa, K., et al. (2020). Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Letters, 481, 63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Kimoto, A., et al. (2023). Exosomes in ascites from patients with human pancreatic cancer enhance remote metastasis partially through endothelial-mesenchymal transition. Pancreatology, 23(4), 377–388.

    CAS  PubMed  Google Scholar 

  245. Zhou, X., et al. (2022). Pancreatic cancer cell-derived exosomes promote lymphangiogenesis by downregulating ABHD11-AS1 expression. Cancers (Basel), 14(19), 4612.

    CAS  PubMed  Google Scholar 

  246. Xu, Y., et al. (2020). Anticancer effects of miR-124 delivered by BM-MSC derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging (Albany NY), 12(19), 19660–19676.

    CAS  PubMed  Google Scholar 

  247. Wei, Q., et al. (2020). EphA2-enriched exosomes promote cell migration and are a potential diagnostic serum marker in pancreatic cancer. Molecular Medicine Reports, 22(4), 2941–2947.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang, Y. F., et al. (2019). Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. Journal of Cancer, 10(18), 4397–4407.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Nakayama, F., et al. (2022). Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor β1. Medical Molecular Morphology, 55(3), 227–235.

    PubMed  PubMed Central  Google Scholar 

  250. Wang, X., et al. (2018). Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Research, 78(16), 4586–4598.

    CAS  PubMed  Google Scholar 

  251. Chen, K., et al. (2022). Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. International Journal of Biological Sciences, 18(3), 1220–1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Li, M., et al. (2022). Exosomal miR-485-3p derived from pancreatic ductal epithelial cells inhibits pancreatic cancer metastasis through targeting PAK1. Chinese Medical Journal, 135(19), 2326–2337.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Cao, W., et al. (2021). Hypoxic pancreatic stellate cell-derived exosomal mirnas promote proliferation and invasion of pancreatic cancer through the PTEN/AKT pathway. Aging (Albany NY), 13(5), 7120–7132.

    CAS  PubMed  Google Scholar 

  254. Li, Z., et al. (2018). Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and re-localization in pancreatic cancer. Cellular Physiology and Biochemistry, 51(2), 610–629.

    CAS  PubMed  Google Scholar 

  255. Sun, Z., et al. (2021). Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Molecular Therapy--Nucleic Acids, 26, 253–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Wu, M., et al. (2020). Role of exosomal microRNA-125b-5p in conferring the metastatic phenotype among pancreatic cancer cells with different potential of metastasis. Life Sciences, 255, 117857.

    CAS  PubMed  Google Scholar 

  257. Xie, Z., et al. (2022). Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut, 71(3), 568–579.

    CAS  PubMed  Google Scholar 

  258. He, Z., et al. (2022). Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Letters, 548, 215751.

    CAS  PubMed  Google Scholar 

  259. Costa-Silva, B., et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 17(6), 816–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Williams, C. B., Yeh, E. S., & Soloff, A. C. (2016). Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer, 2, 15025.

    PubMed  PubMed Central  Google Scholar 

  261. Ye, H., et al. (2018). Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death & Disease, 9(5), 453.

    Google Scholar 

  262. Meng, F., et al. (2015). CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. International Journal of Oncology, 46(3), 1109–1120.

    CAS  PubMed  Google Scholar 

  263. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Chávez-Galán, L., et al. (2015). Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Frontiers in Immunology, 6, 263.

    PubMed  PubMed Central  Google Scholar 

  265. Tarique, A. A., et al. (2015). Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology, 53(5), 676–688.

    CAS  PubMed  Google Scholar 

  266. Helm, O., et al. (2014). M1 and M2: there is no "good" and "bad"-How macrophages promote malignancy-associated features in tumorigenesis. Oncoimmunology, 3(7), e946818.

    PubMed  PubMed Central  Google Scholar 

  267. Stöger, J. L., et al. (2012). Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 225(2), 461–468.

    PubMed  Google Scholar 

  268. Genard, G., Lucas, S., & Michiels, C. (2017). reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy versus chemo- and immunotherapies. Frontiers in Immunology, 8, 828.

    PubMed  PubMed Central  Google Scholar 

  269. Chang, Y. T., et al. (2020). Pancreatic cancer-derived small extracellular vesical Ezrin regulates macrophage polarization and promotes metastasis. American Journal of Cancer Research, 10(1), 12–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Nielsen, S. R., et al. (2016). Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nature Cell Biology, 18(5), 549–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Liu, B., et al. (2016). Tumor-associated macrophage-derived CCL20 enhances the growth and metastasis of pancreatic cancer. Acta Biochimica et Biophysica Sinica Shanghai, 48(12), 1067–1074.

    CAS  Google Scholar 

  272. Thibault, B., et al. (2021). Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Molecular Medicine, 13(7), e13502.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Griesmann, H., et al. (2017). Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut, 66(7), 1278–1285.

    CAS  PubMed  Google Scholar 

  274. Lin, L., et al. (2023). UTMD inhibits pancreatic cancer growth and metastasis by inducing macrophage polarization and vessel normalization. Biomedicine & Pharmacotherapy, 160, 114322.

    CAS  Google Scholar 

  275. Novizio, N., et al. (2021). ANXA1 contained in EVs Regulates macrophage polarization in tumor microenvironment and promotes pancreatic cancer progression and metastasis. International Journal of Molecular Sciences, 22(20), 11018.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Song, Y., et al. (2023). Circ_0018909 knockdown inhibits the development of pancreatic cancer via the miR-545-3p/FASN axis and reduces macrophage polarization to M2. Journal of Biochemical and Molecular Toxicology, 37(4), e23293.

    CAS  PubMed  Google Scholar 

  277. Kurahara, H., et al. (2013). M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas, 42(1), 155–159.

    CAS  PubMed  Google Scholar 

  278. Ma, X., et al. (2016). The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncology Reports, 35(1), 189–196.

    CAS  PubMed  Google Scholar 

  279. Geng, Y., et al. (2021). A notch-dependent inflammatory feedback circuit between macrophages and cancer cells regulates pancreatic cancer metastasis. Cancer Research, 81(1), 64–76.

    PubMed  Google Scholar 

  280. Wu, J., et al. (2022). TNFSF9 promotes metastasis of pancreatic cancer by regulating M2 polarization of macrophages through Src/FAK/p-Akt/IL-1β signaling. International Immunopharmacology, 102, 108429.

    CAS  PubMed  Google Scholar 

  281. Chen, Q., et al. (2019). Tumour cell-derived debris and IgG synergistically promote metastasis of pancreatic cancer by inducing inflammation via tumour-associated macrophages. British Journal of Cancer, 121(9), 786–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Gu, H., et al. (2022). NLRP3 activation in tumor-associated macrophages enhances lung metastasis of pancreatic ductal adenocarcinoma. Translational Lung Cancer Research, 11(5), 858–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Menen, R. S., et al. (2012). Tumor-educated macrophages promote tumor growth and peritoneal metastasis in an orthotopic nude mouse model of human pancreatic cancer. In Vivo, 26(4), 565–569.

    PubMed  Google Scholar 

  284. Penny, H. L., et al. (2016). Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology, 5(8), e1191731.

    PubMed  PubMed Central  Google Scholar 

  285. Liu, C. Y., et al. (2013). M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Laboratory Investigation, 93(7), 844–854.

    CAS  PubMed  Google Scholar 

  286. Shi, T., Li, X., Zheng, J., et al. (2023). Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis. Cellular Oncology. https://doi.org/10.1007/s13402-023-00791-z

  287. Niu, N., et al. (2023). Tumor Cell-Intrinsic SETD2 Deficiency reprograms neutrophils to foster immune escape in pancreatic tumorigenesis. Advanced Science(Weinh), 10(2), e2202937.

    Google Scholar 

  288. Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews. Immunology, 18(2), 134–147.

    CAS  PubMed  Google Scholar 

  289. Cedervall, J., & Olsson, A. K. (2016). Immunity gone astray - NETs in cancer. Trends Cancer, 2(11), 633–634.

    PubMed  Google Scholar 

  290. Deng, J., et al. (2021). DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis. JCI Insight, 6(17), e146133.

    PubMed  PubMed Central  Google Scholar 

  291. Kajioka, H., et al. (2021). Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Letters, 497, 1–13.

    CAS  PubMed  Google Scholar 

  292. Miller-Ocuin, J. L., et al. (2019). DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncoimmunology, 8(9), e1605822.

    PubMed  PubMed Central  Google Scholar 

  293. Takesue, S., et al. (2020). Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer-associated fibroblasts. International Journal of Oncology, 56(2), 596–605.

    CAS  PubMed  Google Scholar 

  294. Bellomo, G., et al. (2022). Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 71(11), 2284–2299.

    CAS  PubMed  Google Scholar 

  295. Lianyuan, T., et al. (2020). Tumor associated neutrophils promote the metastasis of pancreatic ductal adenocarcinoma. Cancer Biology & Therapy, 21(10), 937–945.

    Google Scholar 

  296. Li, Y. X., et al. (2022). ACLP promotes activation of cancer-associated fibroblasts and tumor metastasis via ACLP-PPARγ-ACLP feedback loop in pancreatic cancer. Cancer Letters, 544, 215802.

    CAS  PubMed  Google Scholar 

  297. Cai, W., et al. (2021). PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Letters, 515, 86–95.

    CAS  PubMed  Google Scholar 

  298. Zaghdoudi, S., et al. (2020). FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Molecular Medicine, 12(11), e12010.

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Chu, X., Yang, Y., & Tian, X. (2022). Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. International Journal of Molecular Sciences, 23(17), 9512.

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Stylianou, A., Gkretsi, V., & Stylianopoulos, T. (2018). Transforming growth factor-β modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochimica et Biophysica Acta - General Subjects, 1862(7), 1537–1546.

    CAS  PubMed  Google Scholar 

  301. Goicoechea, S. M., et al. (2014). Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene, 33(10), 1265–1273.

    CAS  PubMed  Google Scholar 

  302. Shan, T., et al. (2017). Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncology Reports, 37(4), 1971–1979.

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Wang, Q., et al. (2017). Curcumin suppresses epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells by inhibiting cancer-associated fibroblasts. American Journal of Cancer Research, 7(1), 125–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Chen, X., et al. (2021). CCL26 is upregulated by nab-paclitaxel in pancreatic cancer-associated fibroblasts and promotes PDAC invasiveness through activation of the PI3K/AKT/mTOR pathway. Acta Biochimica et Biophysica Sinica Shanghai, 53(5), 612–619.

    CAS  Google Scholar 

  305. Liu, J., et al. (2020). Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism. Journal of Proteome Research, 19(9), 3825–3836.

    CAS  PubMed  Google Scholar 

  306. Tian, W., et al. (2022). Berberine suppresses lung metastasis of cancer via inhibiting endothelial transforming growth factor beta receptor 1. Frontiers in Pharmacology, 13, 917827.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Kim, S. O., & Kim, M. R. (2013). (-)-Epigallocatechin 3-gallate inhibits invasion by inducing the expression of Raf kinase inhibitor protein in AsPC-1 human pancreatic adenocarcinoma cells through the modulation of histone deacetylase activity. International Journal of Oncology, 42(1), 349–358.

    PubMed  Google Scholar 

  308. Arya, G., Das, M., & Sahoo, S. K. (2018). Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomedicine & Pharmacotherapy, 102, 555–566.

    CAS  Google Scholar 

  309. Hoca, M., et al. (2020). The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutrition and Cancer, 72(7), 1231–1242.

    CAS  PubMed  Google Scholar 

  310. Li, W., et al. (2013). Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Current Medicinal Chemistry, 20(33), 4185–4194.

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Yu, D., et al. (2017). Quercetin inhibits epithelial-mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial-mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. Oncotargets and Therapy, 10, 4719–4729.

    PubMed  PubMed Central  Google Scholar 

  312. Guo, Y., et al. (2021). Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biology and Toxicology, 37(3), 479–496.

    CAS  PubMed  Google Scholar 

  313. Srivastava, R. K., et al. (2011). Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Frontiers in Bioscience (Elite Edition), 3(2), 515–528.

    PubMed  Google Scholar 

  314. Lee, J., et al. (2016). Quercetin-3-O-glucoside suppresses pancreatic cancer cell migration induced by tumor-deteriorated growth factors in vitro. Oncology Reports, 35(4), 2473–2479.

    CAS  PubMed  Google Scholar 

  315. Wang, C., et al. (2021). Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein & Cell, 12(2), 128–144.

    CAS  Google Scholar 

  316. Yu, X., et al. (2020). Propofol affects the growth and metastasis of pancreatic cancer via ADAM8. Pharmacological Reports, 72(2), 418–426.

    PubMed  Google Scholar 

  317. Polireddy, K., et al. (2017). High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Scientific Reports, 7(1), 17188.

    PubMed  PubMed Central  Google Scholar 

  318. Yamada, S., et al. (2020). Phase I/II study of adding intraperitoneal paclitaxel in patients with pancreatic cancer and peritoneal metastasis. The British Journal of Surgery, 107(13), 1811–1817.

    CAS  PubMed  Google Scholar 

  319. Takahara, N., et al. (2021). A phase I study of intraperitoneal paclitaxel combined with gemcitabine plus nab-paclitaxel for pancreatic cancer with peritoneal metastasis. Investigational New Drugs, 39(1), 175–181.

    CAS  PubMed  Google Scholar 

  320. Nishiyama, Y., et al. (2005). Contribution of whole body FDG-PET to the detection of distant metastasis in pancreatic cancer. Annals of Nuclear Medicine, 19(6), 491–497.

    PubMed  Google Scholar 

  321. Ishikawa, T., et al. (2007). Angiotensin-II administration is useful for the detection of liver metastasis from pancreatic cancer during pharmacoangiographic computed tomography. World Journal of Gastroenterology, 13(22), 3080–3083.

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Hayashibe, A., et al. (2007). Clinical results on intra-arterial adjuvant chemotherapy for prevention of liver metastasis following curative resection of pancreatic cancer. Annals of Surgical Oncology, 14(1), 190–194.

    PubMed  Google Scholar 

  323. Wobser, M., et al. (2006). Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunology, Immunotherapy, 55(10), 1294–1298.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The biorender software (Biorender.com) was used to prepare the figures for this paper.

Author information

Authors and Affiliations

Authors

Contributions

Zhenli Guo, Milad Ashrafizadeh, Wei Zhang, and Rongjun Zou wrote the first draft of the manuscript. Gautam Sethi and Xianbin Zhang developed the concept, collected papers, and performed English Editing.

Corresponding authors

Correspondence to Milad Ashrafizadeh, Gautam Sethi or Xianbin Zhang.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Ashrafizadeh, M., Zhang, W. et al. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 43, 29–53 (2024). https://doi.org/10.1007/s10555-023-10125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10125-y

Keywords

Navigation