Skip to main content

Advertisement

Log in

Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al. (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 24(5), 541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearce, O. M., Delaine-Smith, R. M., Maniati, E., Nichols, S., Wang, J., Böhm, S., et al. (2018). Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discovery, 8(3), 304–319. https://doi.org/10.1158/2159-8290

  3. Liu, J., Chen, Q., Feng, L., & Liu, Z. (2018). Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today, 21, 55–73. https://doi.org/10.1016/j.nantod.2018.06.008

    Article  CAS  Google Scholar 

  4. Kondo, A., Yamamoto, S., Nakaki, R., Shimamura, T., Hamakubo, T., Sakai, J., et al. (2017). Extracellular acidic pH activates the sterol regulatory element-binding protein 2 to promote tumor progression. Cell Reports, 18(9), 2228–2242. https://doi.org/10.1016/j.celrep.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Vaupel, P., & Mayer, A. (2007). Hypoxia in cancer: Significance and impact on clinical outcome. Cancer and Metastasis Reviews, 26(2), 225–239. https://doi.org/10.1007/s10555-007-9055-1

  6. Wang, Y., Shang, W., Niu, M., Tian, J., & Xu, K. (2019). Hypoxia-active nanoparticles used in tumor theranostic. International Journal of Nanomedicine, 14, 3705. https://doi.org/10.2147/IJN.S196959

  7. Kumari, R., Sunil, D., & Ningthoujam, R. S. (2020). Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. Journal of Controlled Release, 319, 135–156. https://doi.org/10.1016/j.jconrel.2019.12.041

  8. Bae, Y. M., Park, Y. I., Nam, S. H., Kim, J. H., Lee, K., Kim, H. M., et al. (2012). Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials, 33(35), 9080–9086. https://doi.org/10.1016/j.biomaterials.2012.08.039

  9. Kwon, E. J., Lo, J. H., & Bhatia, S. N. (2015). Smart nanosystems: Bio-inspired technologies that interact with the host environment. Proceedings of the National Academy of Sciences, 112(47), 14460–14466. https://doi.org/10.1073/pnas.1508522112

  10. Lee, P., Chandel, N. S., & Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 21(5), 268–283. https://doi.org/10.1038/s41580-020-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swinson, D. E., Jones, J. L., Richardson, D., Wykoff, C., Turley, H., Pastorek, J., et al. (2003). Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. Journal of Clinical Oncology, 21(3), 473–482. https://doi.org/10.1200/JCO.2003.11.132

    Article  CAS  PubMed  Google Scholar 

  12. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(23), 5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  13. Colby, A. H., Oberlies, N. H., Pearce, C. J., Herrera, V. L., Colson, Y. L., & Grinstaff, M. W. (2017). Nanoparticle drug-delivery systems for peritoneal cancers: A case study of the design, characterization and development of the expansile nanoparticle. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(3), e1451. https://doi.org/10.1002/wnan.1451

  14. Ruan, S., Cao, X., Cun, X., Hu, G., Zhou, Y., Zhang, Y., et al. (2015). Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 60, 100–110. https://doi.org/10.1016/j.biomaterials.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Hu, C., Cun, X., Ruan, S., Liu, R., Xiao, W., Yang, X., et al. (2018). Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 168, 64–75. https://doi.org/10.1016/j.biomaterials.2018.03.046

    Article  CAS  PubMed  Google Scholar 

  16. Meng, H., Xing, G., Blanco, E., Song, Y., Zhao, L., Sun, B., et al. (2012). Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 8(2), 136–146. https://doi.org/10.1016/j.nano.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  17. Cathcart, J., Pulkoski-Gross, A., & Cao, J. (2015). Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes & Diseases, 2(1), 26–34. https://doi.org/10.1016/j.gendis.2014.12.002

  18. Zhang, B., Zhang, Y., Liao, Z., Jiang, T., Zhao, J., Tuo, Y., et al. (2015). UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 36, 98–109. https://doi.org/10.1016/j.biomaterials.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, B., Jiang, T., Ling, L., Cao, Z., Zhao, J., Tuo, Y., et al. (2016). Enhanced antitumor activity of EGFP-EGF1-conjugated nanoparticles by a multitargeting strategy. ACS Applied Materials & Interfaces, 8(14), 8918–8927. https://doi.org/10.1021/acsami.6b00036

    Article  CAS  Google Scholar 

  20. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  21. Egeblad, M., Rasch, M. G., & Weaver, V. M. (2010). Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 22(5), 697–706. https://doi.org/10.1016/j.ceb.2010.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 196(4), 395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., & Denmeade, S. R. (2012). Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. Journal of the National Cancer Institute, 104(17), 1320–1334. https://doi.org/10.1093/jnci/djs336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miao, L., Newby, J. M., Lin, C. M., Zhang, L., Xu, F., Kim, W. Y., et al. (2016). The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano, 10(10), 9243–9258. https://doi.org/10.1021/acsnano.6b02776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engblom, C., Pfirschke, C., & Pittet, M. J. (2016). The role of myeloid cells in cancer therapies. Nature Reviews Cancer, 16(7), 447–462. https://doi.org/10.1038/nrc.2016.54

    Article  CAS  PubMed  Google Scholar 

  26. Gun, S. Y., Lee, S. W. L., Sieow, J. L., & Wong, S. C. (2019). Targeting immune cells for cancer therapy. Redox Biology, 25, 101174. https://doi.org/10.1016/j.redox.2019.101174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinshaw, D. C., & Shevde, L. A. (2019). The tumor microenvironment innately modulates cancer progression. Cancer Research, 79(18), 4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang, C.-H., Curtis, J. D., Maggi, L. B., Jr., Faubert, B., Villarino, A. V., O’Sullivan, D., et al. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 153(6), 1239–1251. https://doi.org/10.1016/j.cell.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang, C.-H., Qiu, J., O’Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., et al. (2015). Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 162(6), 1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mescher, M. F., Curtsinger, J. M., Agarwal, P., Casey, K. A., Gerner, M., Hammerbeck, C. D., et al. (2006). Signals required for programming effector and memory development by CD8+ T cells. Immunological Reviews, 211(1), 81–92. https://doi.org/10.1111/j.0105-2896.2006.00382.x

    Article  CAS  PubMed  Google Scholar 

  31. Crespo, J., Sun, H., Welling, T. H., Tian, Z., & Zou, W. (2013). T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Current Opinion in Immunology, 25(2), 214–221. https://doi.org/10.1016/j.coi.2012.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das, M., Zhu, C., & Kuchroo, V. K. (2017). Tim-3 and its role in regulating anti-tumor immunity. Immunological Reviews, 276(1), 97–111. https://doi.org/10.1111/imr.12520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., et al. (2018). Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metabolism, 28(2), 243–255. e245. https://doi.org/10.1016/j.cmet.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  34. Mah, A. Y., & Cooper, M. A. (2016). Metabolic regulation of natural killer cell IFN-γ production. Critical Reviews in Immunology, 36(2), 131. https://doi.org/10.1615/CritRevImmunol.2016017387

  35. Young, A., Ngiow, S. F., Gao, Y., Patch, A.-M., Barkauskas, D. S., Messaoudene, M., et al. (2018). A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Research, 78(4), 1003–1016. https://doi.org/10.1158/0008-5472.CAN-17-2826

    Article  CAS  PubMed  Google Scholar 

  36. Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., et al. (2016). LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metabolism, 24(5), 657–671. https://doi.org/10.1016/j.cmet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  37. Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The varied roles of Notch in cancer. Annual Review of Pathology: Mechanisms of Disease, 12, 245–275. https://doi.org/10.1146/annurev-pathol-052016-100127

    Article  CAS  Google Scholar 

  38. Nowell, C. S., & Radtke, F. (2017). Notch as a tumour suppressor. Nature Reviews Cancer, 17(3), 145–159. https://doi.org/10.1038/nrc.2016.145

    Article  CAS  PubMed  Google Scholar 

  39. Ntziachristos, P., Lim, J. S., Sage, J., & Aifantis, I. (2014). From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell, 25(3), 318–334. https://doi.org/10.1038/nrc.2016.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  41. Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25(Suppl. 2), 41–59. https://doi.org/10.1159/000443404

    Article  PubMed  Google Scholar 

  42. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bishayee, A., & Sethi, G. (2016). Bioactive natural products in cancer prevention and therapy: Progress and promise. Seminars in Cancer Biology, 40, 1–3. https://doi.org/10.1016/j.semcancer.2016.08.006

  44. G, M. S., Swetha, M., Keerthana, C. K., Rayginia, T. P., & Anto, R. J. (2021). Cancer chemoprevention: A strategic approach using phytochemicals. Frontiers in Pharmacology, 12, 809308. https://doi.org/10.3389/fphar.2021.809308

  45. Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2019). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in Pharmacology, 10, 1614. https://doi.org/10.3389/fphar.2019.01614

    Article  CAS  PubMed  Google Scholar 

  46. Sacks, D., Baxter, B., Campbell, B. C. V., Carpenter, J. S., Cognard, C., Dippel, D., et al. (2018). Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. International Journal of Stroke, 13(6), 612–632. https://doi.org/10.1177/1747493018778713

    Article  PubMed  Google Scholar 

  47. Islam, M. T. (2017). Diterpenes and their derivatives as potential anticancer agents. Phytotherapy Research, 31(5), 691–712. https://doi.org/10.1002/ptr.5800

    Article  CAS  PubMed  Google Scholar 

  48. Pascolutti, M., & Quinn, R. J. (2014). Natural products as lead structures: Chemical transformations to create lead-like libraries. Drug Discovery Today, 19(3), 215–221. https://doi.org/10.1016/j.drudis.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  49. Ghanbari-Movahed, M., Jackson, G., Farzaei, M. H., & Bishayee, A. (2021). A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Frontiers in Pharmacology, 12, 250. https://doi.org/10.3389/fphar.2021.639840

    Article  CAS  Google Scholar 

  50. Sak, K. (2014). Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8(16), 122. https://doi.org/10.4103/0973-7847.134247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tewari, D., Priya, A., Bishayee, A., & Bishayee, A. (2022). Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clinical and Translational Medicine, 12(4), e795. https://doi.org/10.1002/ctm2.795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Frontiers in Pharmacology, 12, 834072. https://doi.org/10.3389/fonc.2022.834072

    Article  CAS  Google Scholar 

  53. Fakhri, S., Moradi, S. Z., Ash-Rafzadeh, A., & Bishayee, A. (2022). Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacological Research, 177, 105961. https://doi.org/10.1016/j.phrs.2021.105961

    Article  CAS  PubMed  Google Scholar 

  54. Bose, S., Banerjee, S., Mondal, A., Chakraborty, U., Pumarol, J., Croley, C. R., et al. (2020). Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells, 9(6), 1451. https://doi.org/10.3390/cells9061451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braicu, C., Zanoaga, O., Zimta, A. A., Tigu, A. B., Kilpatrick, K. L., Bishayee, A., et al. (2022). Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Seminars in Cancer Biology, 80, 218–236. https://doi.org/10.1016/j.semcancer.2020.05.015

    Article  CAS  PubMed  Google Scholar 

  56. Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in Cancer Biology, 80, 276–305. https://doi.org/10.1016/j.semcancer.2020.02.007

    Article  CAS  PubMed  Google Scholar 

  57. Tewari, D., Patni, P., Bishayee, A., Sah, A. N., & Bishayee, A. (2022). Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Seminars in Cancer Biology, 80, 1–17. https://doi.org/10.1016/j.semcancer.2019.12.008

    Article  PubMed  Google Scholar 

  58. Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382. https://doi.org/10.1016/j.biotechadv.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  59. Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 69, 5–23. https://doi.org/10.1016/j.semcancer.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  60. Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818–1822. https://doi.org/10.1126/science.1095833

    Article  CAS  PubMed  Google Scholar 

  61. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  62. Prabhakar, U., Maeda, H., Jain, R. K., Sevick-Muraca, E. M., Zamboni, W., Farokhzad, O. C., et al. (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. AACR. Cancer Research, 73, 2412. https://doi.org/10.1158/0008-5472.CAN-12-4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greish, K., Frandsen, J., Scharff, S., Gustafson, J., Cappello, J., Li, D., et al. (2010). Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. The Journal of Gene Medicine, 12(7), 572–579. https://doi.org/10.1002/jgm.1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chemistry, 21(5), 797–802. https://doi.org/10.1021/bc100070g

    Article  CAS  PubMed  Google Scholar 

  65. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  Google Scholar 

  66. von Roemeling, C., Jiang, W., Chan, C. K., Weissman, I. L., & Kim, B. Y. (2017). Breaking down the barriers to precision cancer nanomedicine. Trends in Biotechnology, 35(2), 159–171. https://doi.org/10.1016/j.tibtech.2016.07.006

    Article  CAS  Google Scholar 

  67. Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 69, 5–23. https://doi.org/10.1016/j.semcancer.2019.08.014

  68. Su, Z., Dong, S., Zhao, S.-C., Liu, K., Tan, Y., Jiang, X., et al. (2021). Novel nanomedicines to overcome cancer multidrug resistance. Drug Resistance Updates, 58, 100777. https://doi.org/10.1016/j.drup.2021.100777

    Article  CAS  PubMed  Google Scholar 

  69. Huang, Y., Wang, T., Yang, J., Wu, X., Fan, W., & Chen, J. (2022). Current strategies for the treatment of hepatocellular carcinoma by modulating the tumor microenvironment via nano-delivery systems: A review. International Journal of Nanomedicine, 17, 2335–2352. https://doi.org/10.2147/ijn.s363456

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gu, X., Gao, Y., Wang, P., Wang, L., Peng, H., He, Y., et al. (2021). Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. Journal of Controlled Release, 333, 374–390. https://doi.org/10.1016/j.jconrel.2021.03.039

    Article  CAS  PubMed  Google Scholar 

  71. Girish, B. P., Dariya, B., Mannarapu, M., Nagaraju, G. P., & Raju, G. S. R. (2022). Targeting the tumor microenvironment of pancreatic ductal adenocarcinoma using nano-phytomedicines. Seminars in Cancer Biology, 86(Pt 2), 1155–1162. https://doi.org/10.1016/j.semcancer.2021.06.014

    Article  CAS  PubMed  Google Scholar 

  72. Jain, R. K. (2014). Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell, 26(5), 605–622. https://doi.org/10.1016/j.ccell.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martin, J. D., Seano, G., & Jain, R. K. (2019). Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annual Review of Physiology, 81, 505–534. https://doi.org/10.1146/annurev-physiol-020518-114700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Viallard, C., & Larrivée, B. (2017). Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis, 20(4), 409–426. https://doi.org/10.1007/s10456-017-9562-9

    Article  CAS  PubMed  Google Scholar 

  75. Fan, C., Zhang, S., Gong, Z., Li, X., Xiang, B., Deng, H., et al. (2021). Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. Science China Life Sciences, 64(4), 534–547. https://doi.org/10.1007/s11427-019-1735-4

    Article  PubMed  Google Scholar 

  76. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  77. Azab, A. K., Hu, J., Quang, P., Azab, F., Pitsillides, C., Awwad, R., et al. (2012). Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood, The Journal of the American Society of Hematology, 119(24), 5782–5794. https://doi.org/10.1182/blood-2011-09-380410

    Article  CAS  Google Scholar 

  78. Zhao, X., Gao, S., Ren, H., Sun, W., Zhang, H., Sun, J., et al. (2014). Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Research, 74(9), 2455–2464. https://doi.org/10.1158/0008-5472.CAN-13-3009

    Article  CAS  PubMed  Google Scholar 

  79. Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18. https://doi.org/10.1146/annurev.med.57.121304.131306

    Article  CAS  PubMed  Google Scholar 

  80. Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  81. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684. https://doi.org/10.1038/nm0603-677

    Article  CAS  PubMed  Google Scholar 

  82. Leith, J., & Michelson, S. (1995). Secretion rates and levels of vascular endothelial growth factor in clone A or HCT-8 human colon tumour cells as a function of oxygen concentration. Cell Proliferation, 28(8), 415–430. https://doi.org/10.1111/j.1365-2184.1995.tb00082.x

    Article  CAS  PubMed  Google Scholar 

  83. Kerbel, R. S. (2008). Tumor angiogenesis. New England Journal of Medicine, 358(19), 2039–2049. https://doi.org/10.1056/NEJMra0706596

    Article  CAS  PubMed  Google Scholar 

  84. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410. https://doi.org/10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  85. Bayer, C., Shi, K., Astner, S. T., Maftei, C.-A., & Vaupel, P. (2011). Acute versus chronic hypoxia: Why a simplified classification is simply not enough. International Journal of Radiation Oncology, Biology, Physics, 80(4), 965–968. https://doi.org/10.1016/j.ijrobp.2011.02.049

    Article  PubMed  Google Scholar 

  86. MacLauchlan, S. C., Calabro, N. E., Huang, Y., Krishna, M., Bancroft, T., Sharma, T., et al. (2018). HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biology, 65, 45–58. https://doi.org/10.1016/j.matbio.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  87. Sun, L.-L., Lei, F.-R., Jiang, X.-D., Du, X.-L., Xiao, L., Li, W.-D., et al. (2020). LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway. Aging (Albany NY), 12(5), 4506. https://doi.org/10.18632/aging.102904

    Article  CAS  PubMed  Google Scholar 

  88. Fukumura, D., & Jain, R. K. (2007). Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. Journal of Cellular Biochemistry, 101(4), 937–949. https://doi.org/10.1002/jcb.21187

    Article  CAS  PubMed  Google Scholar 

  89. Vaupel, P. (1994). Blood flow, oxygenation, tissue pH distribution, and bioenergetic status of tumors: Ernst Schering Research Foundation, Information and Standards Med. https://doi.org/10.1007/978-1-4615-5865-1_29

  90. Milosevic, M., Fyles, A., Hedley, D., Pintilie, M., Levin, W., Manchul, L., et al. (2001). Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Research, 61(17), 6400–6405.

  91. Horsman, M. R., & Vaupel, P. (2016). Pathophysiological basis for the formation of the tumor microenvironment. Frontiers in Oncology, 6, 66. https://doi.org/10.3389/fonc.2016.00066

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hall, J. E., & Hall, M. E. (2020). Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences.

    Google Scholar 

  93. Boucher, Y., Baxter, L. T., & Jain, R. K. (1990). Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Research, 50(15), 4478–4484.

  94. Molls, M., Anscher, M. S., Nieder, C., & Vaupel, P. (2009). The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer. https://doi.org/10.1007/978-3-540-74386-6

    Book  Google Scholar 

  95. Sonveaux, P., Végran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942. https://doi.org/10.1172/JCI36843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stubbs, M., McSheehy, P. M., Griffiths, J. R., & Bashford, C. L. (2000). Causes and consequences of tumour acidity and implications for treatment. Molecular Medicine Today, 6(1), 15–19. https://doi.org/10.1016/S1357-4310(99)01615-9

    Article  CAS  PubMed  Google Scholar 

  97. Gerweck, L. E. (1998). Tumor pH: Implications for treatment and novel drug design. Seminars in Radiation Oncology, 8(3), 176–182. https://doi.org/10.1016/S1053-4296(98)80043-X

  98. Wu, P., Gao, W., Su, M., Nice, E. C., Zhang, W., Lin, J., et al. (2021). Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Frontiers in Cell and Developmental Biology, 9, 641469. https://doi.org/10.3389/fcell.2021.641469

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fontana, F., Anselmi, M., & Limonta, P. (2022). Molecular mechanisms of cancer drug resistance: Emerging biomarkers and promising targets to overcome tumor progression. Cancers (Basel), 14, 1614. https://doi.org/10.3390/cancers14071614

    Article  PubMed  Google Scholar 

  100. Qu, Y., Dou, B., Tan, H., Feng, Y., Wang, N., & Wang, D. (2019). Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Molecular Cancer, 18(1), 1–16. https://doi.org/10.1186/s12943-019-0992-4

    Article  Google Scholar 

  101. Barker, H. E., Paget, J. T., Khan, A. A., & Harrington, K. J. (2015). The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nature Reviews Cancer, 15(7), 409–425. https://doi.org/10.1038/nrc3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 13(10), 714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  103. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3), 339. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., et al. (2014). Drug resistance in cancer: An overview. Cancers, 6(3), 1769–1792. https://doi.org/10.3390/cancers6031769

    Article  PubMed  PubMed Central  Google Scholar 

  105. Steinbichler, T. B., Dudás, J., Skvortsov, S., Ganswindt, U., Riechelmann, H., & Skvortsova, I.-I. (2018.) Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology, 53, 156–167. https://doi.org/10.1016/j.semcancer.2018.11.006

  106. Khalaf, K., Hana, D., Chou, J.T.-T., Singh, C., Mackiewicz, A., & Kaczmarek, M. (2021). Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Frontiers in Immunology, 12, 656364. https://doi.org/10.3389/fimmu.2021.656364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, T., & Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer Letters, 387, 61–68. https://doi.org/10.1016/j.canlet.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  108. Guo, Y., Wang, M., Zou, Y., Jin, L., Zhao, Z., Liu, Q., et al. (2022). Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. Journal of Nanobiotechnology, 20(1), 1–24. https://doi.org/10.1186/s12951-022-01586-4

    Article  CAS  Google Scholar 

  109. Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454. https://doi.org/10.1093/jnci/djm135

    Article  CAS  PubMed  Google Scholar 

  110. Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting tumor microenvironment for cancer therapy. International journal of Molecular Sciences, 20(4), 840. https://doi.org/10.3390/ijms20040840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer, 12(6), 401–410. https://doi.org/10.1038/nrc3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27(48), 6194–6206. https://doi.org/10.1038/onc.2008.297

    Article  CAS  PubMed  Google Scholar 

  113. Chen, L., Zeng, Y., & Zhou, S.-F. (2018). Role of Apoptosis in Cancer Resistance to Chemotherapy. In Current Understanding of Apoptosis—Programmed Cell Death. London, UK: IntechOpen Limited. https://doi.org/10.5772/intechopen.80056

    Chapter  Google Scholar 

  114. Dogan, E., Kara, H. G., Kosova, B., & Cetintas, V. B. (2022).  Targeting apoptosis to overcome chemotherapy resistance. In C. M. Sergi (Ed.), Metastasis. Exon Publications. https://doi.org/10.36255/exon-publications.metastasis.chemotherapy-resistance

  115. Xue, C., Xie, J., Zhao, D., Lin, S., Zhou, T., Shi, S., et al. (2017). The JAK/STAT 3 signalling pathway regulated angiogenesis in an endothelial cell/adipose-derived stromal cell co-culture, 3D gel model. Cell Proliferation, 50(1), e12307. https://doi.org/10.1111/cpr.12307

    Article  CAS  PubMed  Google Scholar 

  116. Tsao, S.-M., Hsia, T.-C., & Yin, M.-C. (2014). Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF-κ B pathways. Nutrition and Cancer, 66(8), 1331–1341. https://doi.org/10.1080/01635581.2014.956259

    Article  CAS  PubMed  Google Scholar 

  117. de Bittencourt Pasquali, M. A., Gelain, D. P., Zeidán-Chuliá, F., Pires, A. S., Gasparotto, J., Terra, S. R., et al. (2013). Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cellular Signalling, 25(4), 939–954. https://doi.org/10.1016/j.cellsig.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  118. Chen, H.-X., Xu, X.-X., Zhang, Z., Tan, B.-Z., & Zhou, X.-D. (2017). MicroRNA-29b inhibits angiogenesis by targeting VEGFA through the MAPK/ERK and PI3K/Akt signaling pathways in endometrial carcinoma. Cellular Physiology and Biochemistry, 41(3), 933–946. https://doi.org/10.1159/000460510

    Article  CAS  PubMed  Google Scholar 

  119. Fakhri, S., Moradi, S. Z., DeLiberto, L. K., & Bishayee, A. (2022). Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 199, 114989. https://doi.org/10.1016/j.bcp.2022.114989

    Article  CAS  PubMed  Google Scholar 

  120. Karthika, C., Sureshkumar, R., Zehravi, M., Akter, R., Ali, F., Ramproshad, S., et al. (2022). Multidrug resistance of cancer cells and the vital role of P-glycoprotein. Life (Basel), 12(6). https://doi.org/10.3390/life12060897

  121. Goebel, J., Chmielewski, J., & Hrycyna, C. A. (2021). The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist, 4(4), 784–804. https://doi.org/10.20517/cdr.2021.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Waghray, D., & Zhang, Q. (2018). Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. Journal of Medicinal Chemistry, 61(12), 5108–5121. https://doi.org/10.1021/acs.jmedchem.7b01457

    Article  CAS  PubMed  Google Scholar 

  123. Callaghan, R., Luk, F., & Bebawy, M. (2014). Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metabolism and Disposition, 42(4), 623–631. https://doi.org/10.1124/dmd.113.056176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3, 83. https://doi.org/10.2147/HP.S93413

    Article  PubMed  PubMed Central  Google Scholar 

  125. Majnooni, M. B., Fakhri, S., Smeriglio, A., Trombetta, D., Croley, C. R., Bhattacharyya, P., et al. (2019). Antiangiogenic effects of coumarins against cancer: From chemistry to medicine. Molecules, 24(23), 4278. https://doi.org/10.3390/molecules24234278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lugano, R., Ramachandran, M., & Dimberg, A. (2020). Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 77(9), 1745–1770. https://doi.org/10.1007/s00018-019-03351-7

    Article  CAS  PubMed  Google Scholar 

  127. Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1), 1–15. https://doi.org/10.1186/s12943-019-1089-9

    Article  Google Scholar 

  128. Sevcikova, A., Izoldova, N., Stevurkova, V., Kasperova, B., Chovanec, M., Ciernikova, S., et al. (2022). The impact of the microbiome on resistance to cancer treatment with chemotherapeutic agents and immunotherapy. International Journal of Molecular Sciences, 23(1), 488. https://doi.org/10.3390/ijms23010488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garajová, I., Balsano, R., Wang, H., Leonardi, F., Giovannetti, E., Deng, D., et al. (2021). The role of the microbiome in drug resistance in gastrointestinal cancers. Expert Review of Anticancer Therapy, 21(2), 165–176. https://doi.org/10.1080/14737140.2021.1844007

    Article  CAS  PubMed  Google Scholar 

  130. Tang, L., Mei, Y., Shen, Y., He, S., Xiao, Q., Yin, Y., et al. (2021). Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. International Journal of Nanomedicine, 16, 5811. https://doi.org/10.2147/IJN.S321416

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chen, Q., Liu, G., Liu, S., Su, H., Wang, Y., Li, J., et al. (2018). Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends in Pharmacological Sciences, 39(1), 59–74. https://doi.org/10.1016/j.tips.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  132. Martin, J. D., Miyazaki, T., & Cabral, H. (2021). Remodeling tumor microenvironment with nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(6). https://doi.org/10.1002/wnan.1730

  133. Mu, W., Chu, Q., Liu, Y., & Zhang, N. (2020). A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Letters, 12(1), 1–24. https://doi.org/10.1007/s40820-020-00482-6

    Article  CAS  Google Scholar 

  134. Raju, G. S. R., Pavitra, E., Varaprasad, G. L., Bandaru, S. S., Nagaraju, G. P., Farran, B., et al. (2022). Nanoparticles mediated tumor microenvironment modulation: Current advances and applications. Journal of Nanobiotechnology, 20(1), 274. https://doi.org/10.1186/s12951-022-01476-9

    Article  PubMed  PubMed Central  Google Scholar 

  135. Li, W., Du, Q., Li, X., Zheng, X., Lv, F., Xi, X., et al. (2020). Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/Akt/NF-κB signaling pathway. Frontiers in Pharmacology, 11, 114. https://doi.org/10.3389/fphar.2020.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Feyzizadeh, M., Barfar, A., Nouri, Z., Sarfraz, M., Zakeri-Milani, P., & Valizadeh, H. (2022). Overcoming multidrug resistance through targeting ABC transporters: Lessons for drug discovery. Expert Opinion on Drug Discovery, 17(9), 1013–1027. https://doi.org/10.1080/17460441.2022.2112666

    Article  CAS  PubMed  Google Scholar 

  137. Halder, J., Pradhan, D., Kar, B., Ghosh, G., & Rath, G. (2022). Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 40, 102494. https://doi.org/10.1016/j.nano.2021.102494

  138. Gao, S., Yang, D., Fang, Y., Lin, X., Jin, X., Wang, Q., et al. (2019). Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics, 9(1), 126–151. https://doi.org/10.7150/thno.29431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8

    Article  PubMed  PubMed Central  Google Scholar 

  140. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  141. Ealia, S. A. M., & Saravanakumar, M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: Materials science and engineering, (Vol. 263, pp. 032019, Vol. 3): IOP Publishing. https://doi.org/10.1088/1757-899X/263/3/032019

  142. Strambeanu, N., Demetrovici, L., Dragos, D., & Lungu, M. (2014). Nanoparticles: Definition, classification and general physical properties. In Nanoparticles’ promises and risks: characterization, manipulation, and potential hazards to humanity and the environment (pp. 3–8): Springer. https://doi.org/10.1007/978-3-319-11728-7_1

  143. Quinten, M. (2010). Optical properties of nanoparticle systems: Mie and beyond. Wiley. https://doi.org/10.1002/9783527633135

    Book  Google Scholar 

  144. Kolhatkar, A. G., Jamison, A. C., Litvinov, D., Willson, R. C., & Lee, T. R. (2013). Tuning the magnetic properties of nanoparticles. International Journal of Molecular Sciences, 14(8), 15977–16009. https://doi.org/10.3390/ijms140815977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kibria, M., Anisur, M., Mahfuz, M., Saidur, R., & Metselaar, I. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Conversion and Management, 95, 69–89. https://doi.org/10.1016/j.enconman.2015.02.028

    Article  CAS  Google Scholar 

  146. Akbarzadeh, I., Shayan, M., Bourbour, M., Moghtaderi, M., Noorbazargan, H., Yeganeh, F. E., et al. (2021). Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@calcium alginate nanocarrier as a new approach for breast cancer treatment. Biology-Basel, 10(3). https://doi.org/10.3390/biology10030173

  147. Eskandari, Z., Bahadori, F., Yenigun, V. B., Demiray, M., Eroglu, M. S., Kocyigit, A., et al. (2021). Levan enhanced the NF-kappa B suppression activity of an oral nano PLGA-curcumin formulation in breast cancer treatment. International Journal of Biological Macromolecules, 189, 223–231. https://doi.org/10.1016/j.ijbiomac.2021.08.115

    Article  CAS  PubMed  Google Scholar 

  148. Karimpour, M., Feizi, M. A. H., Mahdavi, M., Krammer, B., Verwanger, T., Najafi, F., et al. (2019). Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines. Phytomedicine, 57, 183–190. https://doi.org/10.1016/j.phymed.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  149. Wang, J., Wang, Y., Liu, Q., Yang, L. N., Zhu, R. R., Yu, C. Z., et al. (2016). Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Applied Materials & Interfaces, 8(40), 26511–26523. https://doi.org/10.1021/acsami.6b08400

    Article  CAS  Google Scholar 

  150. Sahne, F., Mohammadi, M., & Najafpour, G. D. (2019). Single-layer assembly of multifunctional carboxymethylcellulose on graphene oxide nanoparticles for improving in vivo curcumin delivery into tumor cells. Acs Biomaterials Science & Engineering, 5(5), 2595–2609. https://doi.org/10.1021/acsbiomaterials.8b01628

    Article  CAS  Google Scholar 

  151. Yallapu, M. M., Maher, D. M., Sundram, V., Bell, M. C., Jaggi, M., & Chauhan, S. C. (2010). Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. Journal of Ovarian Research, 3. https://doi.org/10.1186/1757-2215-3-11

  152. Alam, J., Dilnawaz, F., Sahoo, S. K., Singh, D. V., Mukhopadhyay, A. K., Hussain, T., et al. (2022). Curcumin Encapsulated into Biocompatible Co-Polymer PLGA Nanoparticle Enhanced Anti-Gastric Cancer and Anti-Helicobacter Pylori Effect. Asian Pacific Journal of Cancer Prevention, 23(1), 61–70. https://doi.org/10.31557/apjcp.2022.23.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yallapu, M. M., Gupta, B. K., Jaggi, M., & Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 351(1), 19–29. https://doi.org/10.1016/j.jcis.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  154. Ahmadi, F., Ghasemi-Kasman, M., Ghasemi, S., Tabari, M. G., Pourbagher, R., Kazemi, S., et al. (2017). Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. International Journal of Nanomedicine, 12, 8545–8556. https://doi.org/10.2147/ijn.S146516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Al Moubarak, A., El Joumaa, M., Slika, L., Patra, D., & Borjac, J. (2021). Curcumin-polyallyhydrocarbon nanocapsules potently suppress 1,2-dimethylhydrazine-induced colorectal cancer in mice by inhibiting Wnt/β-catenin pathway. BioNanoScience, 11(2), 518–525. https://doi.org/10.1007/s12668-021-00842-5

    Article  Google Scholar 

  156. Al-Ani, L. A., Kadir, F. A., Hashim, N. M., Julkapli, N. M., Seyfoddin, A., Lu, J., et al. (2020). The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05360

  157. Mardani, R., Hamblin, M. R., Taghizadeh, M., Banafshe, H. R., Nejati, M., Mokhtari, M., et al. (2020). Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathology Research and Practice, 216(9). https://doi.org/10.1016/j.prp.2020.153082

  158. Zaman, M. S., Chauhan, N., Yallapu, M. M., Gara, R. K., Maher, D. M., Kumari, S., et al. (2016). Curcumin nanoformulation for cervical cancer treatment. Scientific Reports, 6. https://doi.org/10.1038/srep20051

  159. Lee, W. H., Loo, C. Y., Ong, H. X., Traini, D., Young, P. M., & Rohanizadeh, R. (2016). Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. Journal of Biomedical Nanotechnology, 12(2), 371–386. https://doi.org/10.1166/jbn.2016.2162

    Article  CAS  PubMed  Google Scholar 

  160. Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., et al. (2007). Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. Journal of Nanobiotechnology, 5, 3. https://doi.org/10.1186/1477-3155-5-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lim, K. J., Bisht, S., Bar, E. E., Maitra, A., & Eberhart, C. G. (2011). A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology & Therapy, 11(5), 464–473. https://doi.org/10.4161/cbt.11.5.14410

    Article  CAS  Google Scholar 

  162. Aghapour, F., Moghadamnia, A. A., Nicolini, A., Kani, S. N. M., Barari, L., Morakabati, P., et al. (2018). Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochemical and Biophysical Research Communications, 500(4), 860–865. https://doi.org/10.1016/j.bbrc.2018.04.174

    Article  CAS  PubMed  Google Scholar 

  163. Balakrishnan, S., Mukherjee, S., Das, S., Bhat, F. A., Singh, P. R., Patra, C. R., et al. (2017). Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochemistry and Function, 35(4), 217–231. https://doi.org/10.1002/cbf.3266

    Article  CAS  PubMed  Google Scholar 

  164. Balakrishnan, S., Bhat, F. A., Singh, P., Mukherjee, S., Elumalai, P., Das, S., et al. (2016). Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Proliferation, 49(6), 678–697. https://doi.org/10.1111/cpr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gulla, S., Reddy, V. C., Araveti, P. B., Lomada, D., Srivastava, A., Reddy, M. C., et al. (2022). Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. Journal of Molecular Structure, 1249. https://doi.org/10.1016/j.molstruc.2021.131556.

  166. Moon, H., Lertpatipanpong, P., Hong, Y., Kim, C. T., & Baek, S. J. (2021). Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. Journal of Functional Foods, 87. https://doi.org/10.1016/j.jff.2021.104756.

  167. Mishra, S., Manna, K., Kayal, U., Saha, M., Chatterjee, S., Chandra, D., et al. (2020). Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. Rsc Advances, 10(39), 23148–23164. https://doi.org/10.1039/d0ra00664e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hu, K., Miao, L., Goodwin, T. J., Li, J., Liu, Q., & Huang, L. (2017). Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 11(5), 4916–4925. https://doi.org/10.1021/acsnano.7b01522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Simon, A. T., Dutta, D., Chattopadhyay, A., & Ghosh, S. S. (2021). Quercetin-loaded luminescent hydroxyapatite nanoparticles for theranostic application in monolayer and spheroid cultures of cervical cancer cell line in vitro. ACS Applied Bio Materials, 4(5), 4495–4506. https://doi.org/10.1021/acsabm.1c00255

    Article  CAS  PubMed  Google Scholar 

  170. Alserihi, R. F., Mohammed, M. R. S., Kaleem, M., Khan, M. I., Sechi, M., Sanna, V., et al. (2022). Development of (-)-epigallocatechin-3-gallate-loaded folate receptor-targeted nanoparticles for prostate cancer treatment. Nanotechnology Reviews, 11(1), 298–311. https://doi.org/10.1515/ntrev-2022-0013

    Article  CAS  Google Scholar 

  171. Siddiqui, I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I., et al. (2009). Introducing nanochemoprevention as a novel approach for cancer control: Proof of Principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Research, 69(5), 1712–1716. https://doi.org/10.1158/0008-5472.Can-08-3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Khan, N., Bharali, D. J., Adhami, V. M., Siddiqui, I. A., Cui, H. D., Shabana, S. M., et al. (2014). Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis, 35(2), 415–423. https://doi.org/10.1093/carcin/bgt321

    Article  CAS  PubMed  Google Scholar 

  173. Zhang, Q., Liu, J., Liu, B., Xia, J., Chen, N., Chen, X., et al. (2014). Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism. Scientific Reports, 4(1), 1–11. https://doi.org/10.1038/srep04628

    Article  CAS  Google Scholar 

  174. Siddiqui, I. A., Bharali, D. J., Nihal, M., Adhami, V. M., Khan, N., Chamcheu, J. C., et al. (2014). Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomedicine-Nanotechnology Biology and Medicine, 10(8), 1619–1626. https://doi.org/10.1016/j.nano.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  175. Wu, M., Jin, J. C., Jin, P., Xu, Y. Q., Yin, J. F., Qin, D. K., et al. (2017). Epigallocatechin gallate-beta-lactoglobulin nanoparticles improve the antitumor activity of EGCG for inducing cancer cell apoptosis. Journal of Functional Foods, 39, 257–263. https://doi.org/10.1016/j.jff.2017.10.038

    Article  CAS  Google Scholar 

  176. de Pace, R. C. C., Liu, X. L., Sun, M., Nie, S. F., Zhang, J., Cai, Q. S., et al. (2013). Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. Journal of Liposome Research, 23(3), 187–196. https://doi.org/10.3109/08982104.2013.788023

    Article  CAS  PubMed  Google Scholar 

  177. Kazi, J., Sen, R., Ganguly, S., Jha, T., Ganguly, S., & Debnath, M. C. (2020). Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft. International Journal of Pharmaceutics, 585. https://doi.org/10.1016/j.ijpharm.2020.119449.

  178. Alizadeh, L., Alizadeh, E., Zarebkohan, A., Ahmadi, E., Rahmati-Yamchi, M., & Salehi, R. (2020). AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. Journal of Nanoparticle Research, 22(1). https://doi.org/10.1007/s11051-019-4735-7.

  179. Chen, B. H., Hsieh, C. H., Tsai, S. Y., Wang, C. Y., & Wang, C. C. (2020). Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62136-2.

  180. Hsieh, D. S., Wang, H., Tan, S. W., Huang, Y. H., Tsai, C. Y., Yeh, M. K., et al. (2011). The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 32(30), 7633–7640. https://doi.org/10.1016/j.biomaterials.2011.06.073

    Article  CAS  PubMed  Google Scholar 

  181. Di Leo, N., Battaglini, M., Berger, L., Giannaccini, M., Dente, L., Hampel, S., et al. (2017). A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. European Journal of Pharmaceutics and Biopharmaceutics, 114, 1–10. https://doi.org/10.1016/j.ejpb.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  182. Aldawsari, H. M., Alhakamy, N. A., Padder, R., Husain, M., & Shadab, M. (2020). Preparation and characterization of chitosan coated PLGA nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 Lung Cancer Cells. Coatings, 10(5). https://doi.org/10.3390/coatings10050439.

  183. Wang, X. C., Parvathaneni, V., Shukla, S. K., Kulkarni, N. S., Muth, A., Kunda, N. K., et al. (2020). Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. International Journal of Biological Macromolecules, 164, 638–650. https://doi.org/10.1016/j.ijbiomac.2020.07.124

    Article  CAS  PubMed  Google Scholar 

  184. Nassir, A. M., Shahzad, N., Ibrahim, I. A. A., Ahmad, I., Md, S., & Ain, M. R. (2018). Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharmaceutical Journal, 26(6), 876–885. https://doi.org/10.1016/j.jsps.2018.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  185. Inbaraj, B. S., Hua, L. H., & Chen, B. H. (2021). Comparative study on inhibition of pancreatic cancer cells by resveratrol gold nanoparticles and a resveratrol nanoemulsion prepared from grape skin. Pharmaceutics, 13(11). https://doi.org/10.3390/pharmaceutics13111871

  186. Xiang, S., Zhang, K. F., Yang, G. H., Gao, D. D., Zeng, C., & He, M. (2019). Mitochondria-targeted and resveratrol-loaded dual-function titanium disulfide nanosheets for photothermal-triggered tumor chemotherapy.Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-019-3044-5

  187. Tehrani, F. K., Ranji, N., Kouhkan, F., & Hosseinzadeh, S. (2020). Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iranian Journal of Basic Medical Sciences, 23(4), 469–482. https://doi.org/10.22038/ijbms.2020.39427.9349

    Article  Google Scholar 

  188. Ramya, S., Thiruvenkataswamy, S., Kavithaa, K., Preethi, S., Winster, H., Balachander, V., et al. (2021). pH dependent drug release of silibinin, a polyphenol conjugated with magnetic nanoparticle against the human colon cancer cell. Journal of Cluster Science, 32(2), 305–317. https://doi.org/10.1007/s10876-020-01789-5

    Article  CAS  Google Scholar 

  189. Pourgholi, A., Dadashpour, M., Mousapour, A., Firouzi Amandi, A., & Zarghami, N. (2021). Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: Insight into the apoptotic genes targets. Asian Pacific Journal of Cancer Prevention, 22(8), 2587–2596. https://doi.org/10.31557/apjcp.2021.22.8.2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rouholamini, S. E. Y., Moghassemi, S., Maharat, Z., Hakamivala, A., Kashanian, S., & Omidfar, K. (2018). Effect of silibinin-loaded nano-niosomal coated with trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast cancer cell line. Artificial Cells Nanomedicine and Biotechnology, 46(3), 524–535. https://doi.org/10.1080/21691401.2017.1326928

    Article  CAS  Google Scholar 

  191. Liu, Y., Xie, X. M., Hou, X. F., Shen, J. Y., Shi, J. P., Chen, H. Z., et al. (2020). Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-00638-x

  192. Hossainzadeh, S., Ranji, N., Sohi, A. N., & Najafi, F. (2019). Silibinin encapsulation in polymersome: A promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR-125b/miR-182 in human breast cancer cells. Journal of Cellular Physiology, 234(12), 22285–22298. https://doi.org/10.1002/jcp.28795

    Article  CAS  PubMed  Google Scholar 

  193. Rajendran, I., Dhandapani, H., Anantanarayanan, R., & Rajaram, R. (2015). Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. RSC Advances, 5(63), 51055–51066. https://doi.org/10.1039/c5ra04303d

    Article  CAS  Google Scholar 

  194. Jiang, J., Mao, Q. S., Li, H., & Lou, J. Q. (2017). Apigenin stabilized gold nanoparticles increased radiation therapy efficiency in lung cancer cells. International Journal of Clinical and Experimental Medicine, 10(9), 13298–13305.

    Google Scholar 

  195. Sen, R., Ganguly, S., Ganguly, S., Debnath, M. C., Chakraborty, S., Mukherjee, B., et al. (2021). Apigenin-loaded PLGA-DMSA nanoparticles: A novel strategy to treat melanoma lung metastasis. Molecular Pharmaceutics, 18(5), 1920–1938. https://doi.org/10.1021/acs.molpharmaceut.0c00977

    Article  CAS  PubMed  Google Scholar 

  196. Raghavan, B. S., Kondath, S., Anantanarayanan, R., & Rajaram, R. (2015). Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry, 50(11), 1966–1976. https://doi.org/10.1016/j.procbio.2015.08.003

    Article  CAS  Google Scholar 

  197. Sulaiman, G. M., Waheeb, H. M., Jabir, M. S., Khazaal, S. H., Dewir, Y. H., & Naidoo, Y. (2020). Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66419-6

  198. Mi, X. J., Choi, H. S., Perumalsamy, H., Shanmugam, R., Thangavelu, L., Balusamy, S. R., et al. (2022). Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. Phytomedicine, 99, 154014. https://doi.org/10.1016/j.phymed.2022.154014

    Article  CAS  PubMed  Google Scholar 

  199. Upadhyay, P., Bhattacharjee, M., Bhattacharya, S., Ahir, M., Adhikary, A., & Patra, P. (2020). Silymarin-loaded, lactobionic acid-conjugated porous PLGA nanoparticles induce apoptosis in liver cancer cells. Acs Applied Bio Materials, 3(10), 7178–7192. https://doi.org/10.1021/acsabm.0c00987

    Article  CAS  PubMed  Google Scholar 

  200. Abdelwahab, T. S., Abdelhamed, R. E., Ali, E. N., Mansour, N. A., & Abdalla, M. S. (2021). Evaluation of silver nanoparticles caffeic acid complex compound as new potential therapeutic agent against cancer incidence in mice. Asian Pacific Journal of Cancer Prevention, 22(10), 3189–3201. https://doi.org/10.31557/apjcp.2021.22.10.3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. El-Gogary, R. I., Gaber, S. A. A., & Nasr, M. (2019). Polymeric nanocapsularbaicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-47586-7

  202. Jo, J., Ko, W. K., & Lee, J. (2017). The effects of baicalin-conjugated gold nanoparticles for inducing apoptosis of cervical cancer cells. Journal of Nanoscience and Nanotechnology, 17(11), 8593–8597. https://doi.org/10.1166/jnn.2017.15175

    Article  CAS  Google Scholar 

  203. Fang, F., Gong, C. Y., Qian, Z. Y., Zhang, X. N., Gou, M. L., You, C., et al. (2009). Honokiol nanoparticles in thermosensitive hydrogel: Therapeutic effects on malignant pleural effusion. ACS Nano, 3(12), 4080–4088. https://doi.org/10.1021/nn900785b

    Article  CAS  PubMed  Google Scholar 

  204. Godugu, C., Doddapaneni, R., & Singh, M. (2017). Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids and Surfaces B-Biointerfaces, 153, 208–219. https://doi.org/10.1016/j.colsurfb.2017.01.038

    Article  CAS  PubMed  Google Scholar 

  205. Md, S., Alhakamy, N. A., Aldawsari, H. M., Husain, M., Kotta, S., Abdullah, S. T., et al. (2020). Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals, 13(7). https://doi.org/10.3390/ph13070152

  206. Badr, D. A., Amer, M. E., Abd-Elhay, W. M., Nasr, M. S. M., Abuamara, T. M. M., Ali, H., et al. (2019). Histopathological and genetic changes proved the anti-cancer potential of free and nano-capsulated sinapic acid. Applied Biological Chemistry, 62(1). https://doi.org/10.1186/s13765-019-0462-0

  207. Daduang, J., Palasap, A., Daduang, S., Boonsiri, P., Suwannalert, P., & Limpaiboon, T. (2015). Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pacific Journal of Cancer Prevention, 16(1), 169–174. https://doi.org/10.7314/apjcp.2015.16.1.169

    Article  PubMed  Google Scholar 

  208. Maity, R., Chatterjee, M., Banerjee, A., Das, A., Mishra, R., Mazumder, S., et al. (2019). Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Materials Science & Engineering C-Materials for Biological Applications, 104. https://doi.org/10.1016/j.msec.2019.109909

  209. Mariadoss, A. V. A., Vinayagam, R., Senthilkumar, V., Paulpandi, M., Murugan, K., Xu, B. J., et al. (2019). Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. International Journal of Biological Macromolecules, 130, 997–1008. https://doi.org/10.1016/j.ijbiomac.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  210. Tousi, M. S., Sepehri, H., Khoee, S., Farimani, M. M., Delphi, L., & Mansourizadeh, F. (2021). Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. Journal of Pharmaceutical Analysis, 11(1), 108–121. https://doi.org/10.1016/j.jpha.2020.04.002

    Article  PubMed  Google Scholar 

  211. Moradi, S. Z., Jalili, F., Farhadian, N., Joshi, T., Wang, M., Zou, L., et al. (2022). Polyphenols and neurodegenerative diseases: Focus on neuronal regeneration. Critical Reviews in Food Science and Nutrition, 62, 3421–3436. https://doi.org/10.1080/10408398.2020.1865870

    Article  CAS  PubMed  Google Scholar 

  212. Fakhri, S., Pesce, M., Patruno, A., Moradi, S. Z., Iranpanah, A., Farzaei, M. H., et al. (2020). Attenuation of Nrf2/Keap1/ARE in Alzheimer’s disease by plant secondary metabolites: A mechanistic review. Molecules, 25(21), 4926. https://doi.org/10.3390/molecules25214926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Fakhri, S., Khodamorady, M., Naseri, M., Farzaei, M. H. & Khan, H. (2020). The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacological Research, 159, 104895. https://doi.org/10.1016/j.phrs.2020.104895

  214. Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238. https://doi.org/10.3389/fbioe.2020.00238

    Article  PubMed  PubMed Central  Google Scholar 

  215. Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664. https://doi.org/10.1016/j.phymed.2021.153664

    Article  CAS  PubMed  Google Scholar 

  216. Karaboga Arslan, A. K., Uzunhisarcıklı, E., Yerer, M. B., & Bishayee, A. (2022). The golden spice curcumin in cancer: A perspective on finalized clinical trials during the last 10 years. Journal of Cancer Research and Therapeutics, 18(1), 19–26. https://doi.org/10.4103/jcrt.JCRT_1017_20

    Article  PubMed  Google Scholar 

  217. Nabavi, S. M., Russo, G. L., Tedesco, I., Daglia, M., Orhan, I. E., Nabavi, S. F., et al. (2018). Curcumin and melanoma: From chemistry to medicine. Nutrition and Cancer, 70(2), 164–175. https://doi.org/10.1080/01635581.2018.1412485

    Article  CAS  PubMed  Google Scholar 

  218. Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 17, 299. https://doi.org/10.2147/IJN.S347187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fakhri, S., Abbaszadeh, F., Jorjani, M., & Pourgholami, M. H. (2021). The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: A review study. Nutrition and Cancer, 73(1), 1–15. https://doi.org/10.1080/01635581.2019.1673451

  220. Zarneshan, S. N., Fakhri, S., Bachtel, G., & Bishayee, A. (2023). Exploiting pivotal mechanisms behind the senescence-like cell cycle arrest in cancer. Advances in Protein Chemistry and Structural Biology, 1(135), 1–9. https://doi.org/10.1016/bs.apcsb.2022.11.007

  221. Fakhri, S., Nouri, Z., Moradi, S. Z., Akkol, E. K., Piri, S., Sobarzo-Sánchez, E., et al. (2021). Targeting multiple signal transduction pathways of sars-CoV-2: Approaches to COVID-19 therapeutic candidates. Molecules, 26(10), 2917. https://doi.org/10.3390/molecules26102917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fakhri, S., Piri, S., Moradi, S. Z., & Khan, H. (2022). Phytochemicals targeting oxidative stress, interconnected neuroinflammatory and neuroapoptotic pathways following radiation. Current Neuropharmacology, 20(5), 836–856. https://doi.org/10.2174/1570159X19666210809103346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Fakhri, S., Gravandi, M. M., Abdian, S., Moradi, S. Z., & Echeverría, J. (2022). Quercetin derivatives in combating spinal cord injury: A mechanistic and systematic review. Life, 12(12), 1960. https://doi.org/10.3390/life12121960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9). https://doi.org/10.3390/nu8090529

  225. Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., et al. (2022). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 80, 256–275. https://doi.org/10.1016/j.semcancer.2020.05.011

  226. Datta, S., Ghosh, S., Bishayee, A., & Sinha, D. (2022). Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Pharmacological Research, 182, 106319. https://doi.org/10.1016/j.phrs.2022.106319

    Article  CAS  PubMed  Google Scholar 

  227. Ghosh, P., Bag, S., Roy, A. S., Subramani, E., Chaudhury, K., & Dasgupta, S. (2016). Solubility enhancement of morin and epicatechin through encapsulation in an albumin based nanoparticulate system and their anticancer activity against the MDA-MB-468 breast cancer cell line. RSC Advances, 6(103), 101415–101429. https://doi.org/10.1039/c6ra20441d

    Article  CAS  Google Scholar 

  228. Ahmad, I., Fakhri, S., Khan, H., Jeandet, P., Aschner, M. & Yu, Z. L. (2020). Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chemico-Biological Interactions, 330, 109229. https://doi.org/10.1016/j.cbi.2020.109229

  229. Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., et al. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122589

  230. Öztürk, E., Arslan, A. K. K., Yerer, M. B., & Bishayee, A. (2017). Resveratrol and diabetes: A critical review of clinical studies. Biomedicine & Pharmacotherapy, 95, 230–234. https://doi.org/10.1016/j.biopha.2017.08.070

    Article  CAS  Google Scholar 

  231. Tuli, H. S., Mittal, S., Aggarwal, D., Parashar, G., Parashar, N. C., Upadhyay, S. K., et al. (2021). Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Seminars in Cancer Biology, 73, 196–218. https://doi.org/10.1016/j.semcancer.2020.09.014

    Article  CAS  PubMed  Google Scholar 

  232. Rahmani, A. H., Alsahli, M. A., Almatroudi, A., Almogbel, M. A., Khan, A. A., Anwar, S., et al. (2022). The potential role of apigenin in cancer prevention and treatment. Molecules, 27(18). https://doi.org/10.3390/molecules27186051

  233. Qattan, M. Y., Khan, M. I., Alharbi, S. H., Verma, A. K., Al-Saeed, F. A., Abduallah, A. M., et al. (2022). Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules, 27(24). https://doi.org/10.3390/molecules27248864

  234. Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research, 92, 21–31. https://doi.org/10.1016/j.nutres.2021.05.011

    Article  CAS  PubMed  Google Scholar 

  235. Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., et al. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171, 105759. https://doi.org/10.1016/j.phrs.2021.105759

    Article  CAS  PubMed  Google Scholar 

  236. Banik, K., Khatoon, E., Harsha, C., Rana, V., Parama, D., Thakur, K. K., et al. (2022). Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytotherapy Research, 36(5), 1854–1883. https://doi.org/10.1002/ptr.7386

    Article  CAS  PubMed  Google Scholar 

  237. Singh, S., Meena, A., & Luqman, S. (2021). Baicalin mediated regulation of key signaling pathways in cancer. Pharmacological Research, 164, 105387. https://doi.org/10.1016/j.phrs.2020.105387

  238. Ghimire, G. P., Koirala, N., Pandey, R. P., Jung, H. J., & Sohng, J. K. (2015). Modification of emodin and aloe-emodin by glycosylation in engineered Escherihia coli. World Journal of Microbiology and Biotechnology, 31(4), 611–619. https://doi.org/10.1007/s11274-015-1815-4

    Article  CAS  PubMed  Google Scholar 

  239. Akkol, E. K., Tatlı, II, Karatoprak, G., Ağar, O. T., Yücel, Ç., Sobarzo-Sánchez, E., et al. (2021). Is emodin with anticancer effects completely innocent? Two sides of the coin. Cancers (Basel), 13(11). https://doi.org/10.3390/cancers13112733

  240. Khatoon, F., Ali, S., Kumar, V., Elasbali, A. M., Alhassan, H. H., Alharethi, S. H., et al. (2022). Pharmacological features, health benefits and clinical implications of honokiol. Journal of Biomolecular Structure and Dynamics, 1–23. https://doi.org/10.1080/07391102.2022.2120541

  241. Rauf, A., Olatunde, A., Imran, M., Alhumaydhi, F. A., Aljohani, A. S. M., Khan, S. A., et al. (2021). Honokiol: A review of its pharmacological potential and therapeutic insights. Phytomedicine, 90, 153647. https://doi.org/10.1016/j.phymed.2021.153647

    Article  CAS  PubMed  Google Scholar 

  242. Ansari, I. A., & Akhtar, M. S. (2019). Current insights on the role of terpenoids as anticancer agents: A perspective on cancer prevention and treatment. In Natural Bio-active Compounds (pp. 53–80): Springer. https://doi.org/10.1007/978-981-13-7205-6_3

  243. Huang, M., Lu, J.-J., Huang, M.-Q., Bao, J.-L., Chen, X.-P., & Wang, Y.-T. (2012). Terpenoids: Natural products for cancer therapy. Expert Opinion on Investigational Drugs, 21(12), 1801–1818. https://doi.org/10.1517/13543784.2012.727395

    Article  CAS  PubMed  Google Scholar 

  244. Perveen, S., & Al-Taweel, A. (2018). Terpenes and terpenoids. BoD–Books on Demand. https://doi.org/10.5772/intechopen.71175

  245. Yan, Z. K., Wang, Q. T., Liu, X. L., Peng, J., Li, Q., Wu, M., et al. (2018). Cationic nanomicelles derived from Pluronic F127 as delivery vehicles of Chinese herbal medicine active components of ursolic acid for colorectal cancer treatment. Rsc Advances, 8(29), 15906–15914. https://doi.org/10.1039/c8ra01071d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Fan, L. L., Zhang, B. C., Xu, A. C., Shen, Z. C., Guo, Y., Zhao, R. R., et al. (2018). Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy. Molecular Pharmaceutics, 15(6), 2466–2478. https://doi.org/10.1021/acs.molpharmaceut.8b00444

    Article  CAS  PubMed  Google Scholar 

  247. Sharma, M., Sharma, S., Sharma, V., Sharma, K., Yadav, S. K., Dwivedi, P., et al. (2017). Oleanolic-bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility. International Journal of Biological Macromolecules, 104, 1345–1358. https://doi.org/10.1016/j.ijbiomac.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  248. Bao, X., Gao, M., Xu, H., Liu, K. X., Zhang, C. H., Jiang, N., et al. (2015). A novel oleanolic acid-loaded PLGA-TPGS nanoparticle for liver cancer treatment. Drug Development and Industrial Pharmacy, 41(7), 1193–1203. https://doi.org/10.3109/03639045.2014.938081

    Article  CAS  PubMed  Google Scholar 

  249. Huang, Y., Chen, Y., Shaw, A. M., Goldfine, H., Tian, J. Q., & Cai, J. Y. (2018). Enhancing TFEB-mediated cellular degradation pathways by the mTORC1 inhibitor quercetin.Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/5073420

  250. Zhang, X. F., Huang, F. H., Zhang, G. L., Bai, D. P., Massimo, D. F., Huang, Y. F., et al. (2017). Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3). International Journal of Nanomedicine, 12, 7551–7575. https://doi.org/10.2147/ijn.S144161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kundu, M., Chatterjee, S., Ghosh, N., Manna, P., Das, J., & Sil, P. C. (2020). Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. Materials Science & Engineering C-Materials for Biological Applications, 116. https://doi.org/10.1016/j.msec.2020.111239

  252. Wang, C., Shan, Y., Yang, J. L., Xu, X. L., Zhuang, B., Fan, Y. F., et al. (2015). Inhibition of cancer angiogenesis using triptolide nanoparticles. Journal of Biomedical Nanotechnology, 11(5), 805–815. https://doi.org/10.1166/jbn.2015.2016

    Article  CAS  PubMed  Google Scholar 

  253. Gowda, R., Madhunapantula, S. V., Sharma, A., Kuzu, O. F., & Robertson, G. P. (2014). Nanolipolee-007, a novel nanoparticle-based drug containing leelamine for the treatment of melanoma. Molecular Cancer Therapeutics, 13(10), 2328–2340. https://doi.org/10.1158/1535-7163.Mct-14-0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Asasutjarit, R., Sooksai, N., Fristiohady, A., Lairungruang, K., Ng, S. F., & Fuongfuchat, A. (2021). Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 13(8). https://doi.org/10.3390/pharmaceutics13081290

  255. Wang, J., Song, Y. H., Zhang, M. X., Wu, Z. S., Xu, Y. J., Lin, J., et al. (2019). A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. Journal of Materials Chemistry B, 7(18), 2938–2947. https://doi.org/10.1039/c8tb03123a

    Article  CAS  Google Scholar 

  256. Chen, X., Yin, T., Zhang, B., Sun, B., Chen, J., Xiao, T., et al. (2020). Inhibitory effects of brusatol delivered using glycosaminoglycan-placental chondroitin sulfate A-modified nanoparticles on the proliferation, migration and invasion of cancer cells. International Journal of Molecular Medicine, 46(2), 817–827. https://doi.org/10.3892/ijmm.2020.4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kumar, P., Singh, A. K., Raj, V., Rai, A., Keshari, A. K., Kumar, D., et al. (2018). Poly(lactic-co-glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: Characterization, in vitro and in vivo evaluations. International Journal of Nanomedicine, 13, 975–990. https://doi.org/10.2147/ijn.S157391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Mehta, M., Malyla, V., Paudel, K. R., Chellappan, D. K., Hansbro, P. M., Oliver, B. G., et al. (2021). Berberine loaded liquid crystalline nanostructure inhibits cancer progression in adenocarcinomic human alveolar basal epithelial cells in vitro. Journal of Food Biochemistry, 45(11). https://doi.org/10.1111/jfbc.13954

  259. Chiu, C. F., Fu, R. H., Hsu, S. H., Yu, Y. H., Yang, S. F., Tsao, T. C. Y., et al. (2021). Delivery capacity and anticancer ability of the berberine-loaded gold nanoparticles to promote the apoptosis effect in breast cancer. Cancers, 13(21). https://doi.org/10.3390/cancers13215317

  260. Loo, Y. S., Madheswaran, T., Rajendran, R., & Bose, R. J. C. (2020). Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. Journal of Drug Delivery Science and Technology, 57. https://doi.org/10.1016/j.jddst.2020.101756

  261. Bhanumathi, R., Manivannan, M., Thangaraj, R., & Kannan, S. (2018). Drug-carrying capacity and anticancer effect of the folic acid-and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega, 3(7), 8317–8328. https://doi.org/10.1021/acsomega.7b01347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bhanumathi, R., Vimala, K., Shanthi, K., Thangaraj, R., & Kannan, S. (2017). Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. New Journal of Chemistry, 41(23), 14466–14477. https://doi.org/10.1039/c7nj02531a

    Article  CAS  Google Scholar 

  263. Grebinyk, A., Yashchuk, V., Bashmakova, N., Gryn, D., Hagemann, T., Naumenko, A., et al. (2019). A new triple system DNA-Nanosilver-Berberine for cancer therapy. Applied Nanoscience, 9(5), 945–956. https://doi.org/10.1007/s13204-018-0688-x

    Article  CAS  Google Scholar 

  264. Rad, J. G., & Hoskin, D. W. (2020). Delivery of apoptosis-inducing piperine to triple-negative breast cancer cells via co-polymeric nanoparticles. Anticancer Research, 40(2), 689–694. https://doi.org/10.21873/anticanres.13998

    Article  CAS  PubMed  Google Scholar 

  265. Pachauri, M., Gupta, E. D., & Ghosh, P. C. (2015). Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. Journal of Drug Delivery Science and Technology, 29, 269–282. https://doi.org/10.1016/j.jddst.2015.08.009

    Article  CAS  Google Scholar 

  266. Li, X. L., Zhen, D. H., Lu, X. W., Xu, H. E., Shao, Y., Xue, Q. P., et al. (2010). Enhanced cytotoxicity and activation of ROS-dependent c-Jun NH2-terminal kinase and caspase-3 by low doses of tetrandrine-loaded nanoparticles in Lovo cells - A possible Trojan strategy against cancer. European Journal of Pharmaceutics and Biopharmaceutics, 75(3), 334–340. https://doi.org/10.1016/j.ejpb.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  267. Li, C. P., Cai, G., Song, D. Q., Gao, R. X., Teng, P., Zhou, L. H., et al. (2019). Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer. Biomaterials Science, 7(9), 3627–3639. https://doi.org/10.1039/c9bm00613c

    Article  CAS  PubMed  Google Scholar 

  268. Chen, M. Y., Xiong, F., Ma, L., Yao, H., Wang, Q. R., Wen, L. J., et al. (2016). Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. International Journal of Nanomedicine, 11, 4413–4422. https://doi.org/10.2147/ijn.S105543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Saeed, L. M., Mahmood, M., Xu, Y., Nima, Z. A., Kannarpady, G. K., Bratton, S. M., et al. (2015). Nanodelivery of gambogic acid by functionalized graphene enhances inhibition of cell proliferation and induces G(0)/G(1) cell cycle arrest in cervical, ovarian, and prostate cancer cells. Rsc Advances, 5(55), 44022–44030. https://doi.org/10.1039/c5ra00833f

    Article  CAS  Google Scholar 

  270. Verma, R. K., Yu, W., Singh, S. P., Shankar, S., & Srivastava, R. K. (2015). Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine-Nanotechnology Biology and Medicine, 11(8), 2061–2070. https://doi.org/10.1016/j.nano.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  271. Shin, S. W., Jung, W., Choi, C., Kim, S. Y., Son, A., Kim, H., et al. (2018). Fucoidan-manganese dioxide nanoparticles potentiate radiation therapy by co-targeting tumor hypoxia and angiogenesis. Marine Drugs, 16(12). https://doi.org/10.3390/md16120510

  272. Li, S. S., Zhang, F. Z., Yu, Y., & Zhang, Q. X. (2020). A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydrate Polymers, 235. https://doi.org/10.1016/j.carbpol.2020.115983

  273. Khuda-Bukhsh, A. R., Bhattacharyya, S. S., Paul, S., & Boujedaini, N. (2010). Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375. Zhong Xi Yi Jie He Xue Bao, 8(9), 853–862. https://doi.org/10.3736/jcim20100909

    Article  CAS  PubMed  Google Scholar 

  274. Shanmugam, M. K., Dai, X., Kumar, A. P., Tan, B. K., Sethi, G., & Bishayee, A. (2013). Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochemical Pharmacology, 85(11), 1579–1587. https://doi.org/10.1016/j.bcp.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  275. Zafar, S., Khan, K., Hafeez, A., Irfan, M., Armaghan, M., Rahman, A. U., et al. (2022). Ursolic acid: A natural modulator of signaling networks in different cancers. Cancer Cell International, 22(1), 399. https://doi.org/10.1186/s12935-022-02804-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Mohtashami, L., Ghows, N., Tayarani-Najaran, Z., & Iranshahi, M. (2019). Galbanic acid-coated Fe3O4 magnetic nanoparticles with enhanced cytotoxicity to prostate cancer cells. Planta Medica, 85(2), 169–178. https://doi.org/10.1055/a-0721-1886

    Article  CAS  PubMed  Google Scholar 

  277. Li, H. J., Liu, Z., Deng, X. R., Lin, J., Ma, P. A., & Teng, B. (2018). Preparation and in vitro anti-laryngeal cancer evaluation of protopanaxadiol-loaded hollow gold nanoparticles. Chinese Journal of Analytical Chemistry, 46(5), 716–722. https://doi.org/10.1016/s1872-2040(18)61087-4

    Article  CAS  Google Scholar 

  278. Fakhri, S., Abbaszadeh, F., Moradi, S. Z., Cao, H., Khan, H., & Xiao, J. (2022). Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxidative Medicine and Cellular Longevity, 2022, 1. https://doi.org/10.1155/2022/8100195

    Article  CAS  Google Scholar 

  279. Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A. G., & Bishayee, A. (2019). Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 858, 172472. https://doi.org/10.1016/j.ejphar.2019.172472

    Article  CAS  PubMed  Google Scholar 

  280. Hou, Q., He, W.-J., Wu, Y.-S., Hao, H.-J., Xie, X.-Y., & Fu, X.-B. (2020). Berberine: A traditional natural product with novel biological activities. Alternative Therapies in Health & Medicine, 26, 20–27.

  281. Liu, D., Meng, X., Wu, D., Qiu, Z., & Luo, H. (2019). A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Frontiers in Pharmacology, 10, 9. https://doi.org/10.3389/fphar.2019.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Nechepurenko, I., Salakhutdinov, N., & Tolstikov, G. (2010). Berberine: Chemistry and biological activity. Chemistry for Sustainable Development, 18, 1–23.

  283. Och, A., Podgórski, R., & Nowak, R. (2020). Biological activity of berberine—a summary update. Toxins, 12(11), 713. https://doi.org/10.3390/toxins12110713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Geetha, T., Kapila, M., Prakash, O., Deol, P. K., Kakkar, V., & Kaur, I. P. (2015). Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. Journal of Drug Targeting, 23(2), 159–169. https://doi.org/10.3109/1061186x.2014.965717

    Article  CAS  PubMed  Google Scholar 

  285. Sun, Q., Teong, B., Chen, I. F., Chang, S. J., Gao, J. M., & Kuo, S. M. (2014). Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 102(3), 455–462. https://doi.org/10.1002/jbm.b.33023

    Article  CAS  PubMed  Google Scholar 

  286. Song, W., Anselmo, A. C., & Huang, L. (2019). Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechnology, 14(12), 1093–1103. https://doi.org/10.1038/s41565-019-0589-5

    Article  CAS  PubMed  Google Scholar 

  287. Ghanbari-Movahed, M., Kaceli, T., Mondal, A., Farzaei, M. H., & Bishayee, A. (2021). Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 9(5), 480. https://doi.org/10.3390/biomedicines9050480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Hu, Y. L., Zhang, L. M., Wang, H., Xu, S., Mujeeb, A., Nie, G. J., et al. (2017). Biological effects of amphiphilic copolymer nanoparticle-encapsulated multi- target chemotherapeutic drugs on MCF-7 human breast cancer cells. Metabolomics, 13(5). https://doi.org/10.1007/s11306-017-1187-x

  289. Pawar, V. K., Singh, Y., Sharma, K., Shrivastav, A., Sharma, A., Singh, A., et al. (2019). Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. International Journal of Biological Macromolecules, 122, 1100–1114. https://doi.org/10.1016/j.ijbiomac.2018.09.059

    Article  CAS  PubMed  Google Scholar 

  290. Varukattu, N. B., Vivek, R., Rejeeth, C., Thangam, R., Ponraj, T., Sharma, A., et al. (2020). Nanostructured pH-responsive biocompatible chitosan coated copper oxide nanoparticles: A polymeric smart intracellular delivery system for doxorubicin in breast cancer cells. Arabian Journal of Chemistry, 13(1), 2276–2286. https://doi.org/10.1016/j.arabjc.2018.04.012

    Article  CAS  Google Scholar 

  291. Wang, Q., Zhong, Y. N., Liu, W. T., Wang, Z. M., Gu, L. Q., Li, X. J., et al. (2019). Enhanced chemotherapeutic efficacy of the low-dose doxorubicin in breast cancer via nanoparticle delivery system crosslinked hyaluronic acid. Drug Delivery, 26(1), 12–22. https://doi.org/10.1080/10717544.2018.1507057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wang, Z. G., Zhang, R. X., Zhang, T., He, C. S., He, R., Ju, X. R., et al. (2018). In situ proapoptotic peptide-generating rapeseed protein-based nanocomplexes synergize chemotherapy for cathepsin-B overexpressing breast cancer. ACS Applied Materials & Interfaces, 10(48), 41056–41069. https://doi.org/10.1021/acsami.8b14001

    Article  CAS  Google Scholar 

  293. Long, J. T., Cheang, T. Y., Zhuo, S. Y., Zeng, R. F., Dai, Q. S., Li, H. P., et al. (2014). Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. Journal of Nanobiotechnology, 12. https://doi.org/10.1186/s12951-014-0037-5

  294. Ramya, A. N., Joseph, M. M., Maniganda, S., Karunakaran, V., Sreelekha, T. T., & Maiti, K. K. (2021). Emergence of gold-mesoporous silica hybrid nanotheranostics: Dox-encoded, folate targeted chemotherapy with modulation of SERS fingerprinting for apoptosis toward tumor eradication (vol 13, 1700819, 2017). Small, 17(2). https://doi.org/10.1002/smll.202007852

  295. Quinto, C. A., Mohindra, P., Tong, S., & Bao, G. (2015). Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale, 7(29), 12728–12736. https://doi.org/10.1039/c5nr02718g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Pan, D. C., Krishnan, V., Salinas, A. K., Kim, J., Sun, T., Ravid, S., et al. (2021). Hyaluronic acid-doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioengineering & Translational Medicine, 6(1). https://doi.org/10.1002/btm2.10166

  297. Assy, L., Gemeay, A., Gomaa, S., Aldubayan, M. A., & Salem, M. L. (2020). Impact of graphene oxide nano sheets loaded with chemotherapeutic drug on tumor cells. Journal of Nanoparticle Research, 22(4). https://doi.org/10.1007/s11051-020-04790-1

  298. Contreras-Caceres, R., Leiva, M., Ortiz, R., Diaz, A., Perazzoli, G., Casado-Rodriguez, M., et al. (2017). Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Research, 10(3), 856–875. https://doi.org/10.1007/s12274-016-1340-2

    Article  CAS  Google Scholar 

  299. Divya, M., Maiti, S. K., Sangeetha, P., Shivaraju, S., Kumar, N., Tiwari, A. K., et al. (2019). Evaluation of chemotherapy with nanosomal paclitaxel and gene therapy expressing apoptosis-inducing proteins in the management of spontaneous canine mammary neoplasm. Journal of Stem Cells & Regenerative Medicine, 15(2), 24–34. https://doi.org/10.46582/jsrm.1502007

    Article  Google Scholar 

  300. Shao, W., Paul, A., Zhao, B., Lee, C., Rodes, L., & Prakash, S. (2013). Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 34(38), 10109–10119. https://doi.org/10.1016/j.biomaterials.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  301. Ullah, I., Chung, K., Bae, S., Li, Y., Kim, C., Choi, B., et al. (2020). Nose-to-brain delivery of cancer-targeting paclitaxel-loaded nanoparticles potentiates antitumor effects in malignant glioblastoma. Molecular Pharmaceutics, 17(4), 1193–1204. https://doi.org/10.1021/acs.molpharmaceut.9b01215

    Article  CAS  PubMed  Google Scholar 

  302. Yan, C. Y., Shi, W. G., Gu, J. W., Lee, R. J., & Zhang, Y. (2021). Design of a novel nucleus-targeted NLS-KALA-SA nanocarrier to delivery poorly water-soluble anti-tumor drug for lung cancer treatment. Journal of Pharmaceutical Sciences, 110(6), 2432–2441. https://doi.org/10.1016/j.xphs.2020.12.034

    Article  CAS  PubMed  Google Scholar 

  303. Zhao, X. F., Fan, J., Wu, P., Wei, C. M., Chen, Q. Y., Ming, Z., et al. (2019). Chronic chemotherapy with paclitaxel nanoparticles induced apoptosis in lung cancer in vitro and in vivo. International Journal of Nanomedicine, 14, 1299–1309. https://doi.org/10.2147/ijn.S188049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Huang, J. Y., Chen, M. H., Kuo, W. T., Sun, Y. J., & Lin, F. H. (2015). The characterization and evaluation of cisplatin-loaded magnetite-hydroxyapatite nanoparticles (mHAp/CDDP) as dual treatment of hyperthermia and chemotherapy for lung cancer therapy. Ceramics International, 41(2), 2399–2410. https://doi.org/10.1016/j.ceramint.2014.10.054

    Article  CAS  Google Scholar 

  305. Luo, J., Zhong, X., Peng, Y., Hao, C., Liang, X., Yang, Y., et al. (2022). Self-anti-angiogenesis nanoparticles enhance anti-metastatic-tumor efficacy of chemotherapeutics. Bioactive Materials, 13, 179–190. https://doi.org/10.1016/j.bioactmat.2021.10.037

    Article  CAS  PubMed  Google Scholar 

  306. Tang, Q. S., & Chen, D. Z. (2014). Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-Diamminedichloroplatinum Cisplatin on human ovarian cancer. Bio-Medical Materials and Engineering, 24(1), 711–722. https://doi.org/10.3233/bme-130859

    Article  CAS  PubMed  Google Scholar 

  307. Zhao, X. X., Pan, J. H., Li, W., Yang, W. D., Qin, L., & Pan, Y. L. (2018). Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. International Journal of Nanomedicine, 13, 6207–6221. https://doi.org/10.2147/ijn.S176928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Farhana, A., Koh, A. E., Kothandan, S., Alsrhani, A., Mok, P. L., & Subbiah, S. K. (2021). Treatment of HT29 human colorectal cancer cell line with nanocarrier-encapsulated camptothecin reveals histone modifier genes in the Wnt signaling pathway as important molecular cues for colon cancer targeting. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212286

  309. Johnston, M. C., Nicoll, J. A., Redmond, K. M., Smyth, P., Greene, M. K., McDaid, W. J., et al. (2020). DR5-targeted, chemotherapeutic drug-loaded nanoparticles induce apoptosis and tumor regression in pancreatic cancer in vivo models. Journal of Controlled Release, 324, 610–619. https://doi.org/10.1016/j.jconrel.2020.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Rajan, M., Krishnan, P., Pradeepkumar, P., Jeyanthinath, M., Jeyaraj, M., Ling, M. P., et al. (2017). Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe3O4 functionalized beta-cyclodextrin nanovehicle. Rsc Advances, 7(73), 46271–46285. https://doi.org/10.1039/c7ra06615e

    Article  CAS  Google Scholar 

  311. Sandoval, M. A., Sloat, B. R., Lansakara, D. S. P., Kumar, A., Rodriguez, B. L., Kiguchi, K., et al. (2012). EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity. Journal of Controlled Release, 157(2), 287–296. https://doi.org/10.1016/j.jconrel.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  312. Sundaramoorthy, P., Ramasamy, T., Mishra, S. K., Jeong, K. Y., Yong, C. S., Kim, J. O., et al. (2016). Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomaterialia, 42, 220–231. https://doi.org/10.1016/j.actbio.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  313. Liu, Y., Qiu, N., Shen, L., Liu, Q., Zhang, J., Cheng, Y. Y., et al. (2020). Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. Journal of Controlled Release, 323, 431–441. https://doi.org/10.1016/j.jconrel.2020.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Cova, E., Pandolfi, L., Colombo, M., Frangipane, V., Inghilleri, S., Morosini, M., et al. (2019). Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: An in vitro study. International Journal of Nanomedicine, 14, 773–785. https://doi.org/10.2147/ijn.S186344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Wang, Q., Liu, F. C., Wang, L. F., Xie, C., Wu, P. Y., Du, S. Y., et al. (2020). Enhanced and prolonged antitumor effect of salinomycin-loaded gelatinase-responsive nanoparticles via targeted drug delivery and inhibition of cervical cancer stem cells. International Journal of Nanomedicine, 15, 1283–1295. https://doi.org/10.2147/ijn.S234679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Lu, Y., Wen, Q., Luo, J., Xiong, K., Wu, Z. X., Wang, B. Q., et al. (2020). Self-assembled dihydroartemisinin nanoparticles as a platform for cervical cancer chemotherapy. Drug Delivery, 27(1), 876–887. https://doi.org/10.1080/10717544.2020.1775725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Jannu, A. K., Puppala, E. R., Gawali, B., Syamprasad, N. P., Alexander, A., Marepally, S., et al. (2021). Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. International Journal of Pharmaceutics, 605, 120819. https://doi.org/10.1016/j.ijpharm.2021.120819

    Article  CAS  PubMed  Google Scholar 

  318. AbouAitah, K., Hassan, H. A., Swiderska-Sroda, A., Gohar, L., Shaker, O. G., Wojnarowicz, J., et al. (2020). Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers, 12(1). https://doi.org/10.3390/cancers12010144

  319. Kooshki, L., Mahdavi, P., Fakhri, S., Akkol, E. K. & Khan, H. (2022). Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors, 48(2), 359–383.

  320. Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & Molecular Biology Letters, 24(1), 1–11. https://doi.org/10.1186/s11658-019-0164-y

    Article  Google Scholar 

  321. Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88, 102925. https://doi.org/10.1016/j.bioorg.2019.102925

    Article  CAS  PubMed  Google Scholar 

  322. Li, F., Jiang, T., Li, Q., & Ling, X. (2017). Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? American Journal of Cancer Research, 7(12), 2350–2394.

  323. Zahavi, D., & Weiner, L. (2020). Monoclonal antibodies in cancer therapy. Antibodies, 9(3), 34. https://doi.org/10.3390/antib9030034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Baiao, A., Sousa, F., Oliveira, A. V., Oliveira, C., & Sarmento, B. (2020). Effective intracellular delivery of bevacizumab via PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 8(13), 3720–3729. https://doi.org/10.1039/d0bm00556h

    Article  CAS  PubMed  Google Scholar 

  325. Kim, M. G., Jo, S. D., Yhee, J. Y., Lee, B. S., Lee, S. J., Park, S. G., et al. (2017). Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles. Biochemical and Biophysical Research Communications, 489(1), 35–41. https://doi.org/10.1016/j.bbrc.2017.05.103

    Article  CAS  PubMed  Google Scholar 

  326. Abedin, M. R., Powers, K., Aiardo, R., Barua, D., & Barua, S. (2021). Antibody-drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86762-6

  327. Yan, Y., Cheng, X., Li, L., Zhang, R. M., Zhu, Y., Wu, Z. S., et al. (2021). A novel small molecular antibody, HER2-nanobody, inhibits tumor proliferation in HER2-positive breast cancer cells in vitro and in vivo. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.669393

  328. Liang, S. J., Sun, M. L., Lu, Y. L., Shi, S., Yang, Y. T., Lin, Y., et al. (2020). Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. Journal of Materials Chemistry B, 8(36), 8368–8382. https://doi.org/10.1039/d0tb01391a

    Article  CAS  PubMed  Google Scholar 

  329. Kaluzova, M., Bouras, A., Machaidze, R., & Hadjipanayis, C. G. (2015). Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget, 6(11), 8788–8806. https://doi.org/10.18632/oncotarget.3554

    Article  PubMed  PubMed Central  Google Scholar 

  330. Song, L. N., Zhang, W., Chen, H., Zhang, X. Z., Wu, H. A., Ma, M., et al. (2019). Apoptosis-promoting effect of rituximab-conjugated magnetic nanoprobes on malignant lymphoma cells with CD20 overexpression. International Journal of Nanomedicine, 14, 921–936. https://doi.org/10.2147/ijn.S185458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Yu, H. I., Shen, H. C., Chen, S. H., Lim, Y. P., Chuang, H. H., Tai, T. S., et al. (2019). Autophagy modulation in human thyroid cancer cells following aloperine treatment. International Journal of Molecular Sciences, 20(21). https://doi.org/10.3390/ijms20215315

  332. Thao, D., Minh, L., Anh, T. T. M., Nga, N. T., Hue, P. T. K., & Kiem, P. V. (2021). The improved anticancer activities of piperine nanoliposome conjugated CD133 monoclonal antibody against NTERA-2 cancer stem cells. Natural Product Communications, 16(2). https://doi.org/10.1177/1934578x21998184

  333. Niu, F., Yan, J., Ma, B. H., Li, S. C., Shao, Y. P., He, P. C., et al. (2018). Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials, 167, 132–142. https://doi.org/10.1016/j.biomaterials.2018.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Yang, C. P., He, X. F., Song, L. N., Zhan, X., Zhang, Y., Dou, J., et al. (2014). gamma-Fe2O3 Nanoparticles increase therapeutic efficacy of combination with paclitaxel and anti-ABCG2 monoclonal antibody on multiple myeloma cancer stem cells in mouse model. Journal of Biomedical Nanotechnology, 10(2), 336–344. https://doi.org/10.1166/jbn.2014.1730

    Article  CAS  PubMed  Google Scholar 

  335. Huang, K. H., Liu, J. H., Wang, L. Y., Zhu, Z. H., Chen, Q. K., Min, J., et al. (2007). Study of the anti-tumor effect of anti-vascular endothelial growth factor McAb 5-fluorouracil loaded polylactic acid nanoparticles. Zhonghua Wei Chang Wai Ke Za Zhi = Chinese Journal of Gastrointestinal Surgery, 10(5), 482–485.

  336. Khatibi, A. S., Roodbari, N. H., Majidzade-A, K., Yaghmaei, P., & Farahmand, L. (2019). In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3 epsilon nanobody in breast cancer mice model. Immunotherapy, 11(18), 1555–1567. https://doi.org/10.2217/imt-2019-0068

    Article  CAS  PubMed  Google Scholar 

  337. Chen, L., Huang, Y., Yu, X., Lu, J., Jia, W., Song, J., et al. (2021). Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Frontiers in Pharmacology, 12, 642900. https://doi.org/10.3389/fphar.2021.642900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Liu, T., Tian, J. G., Chen, Z. L., Liang, Y., Liu, J., Liu, S., et al. (2014). Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology, 25(34). https://doi.org/10.1088/0957-4484/25/34/345103

  339. Pan, H., Li, S., Li, M., Tao, Q., Jia, J., Li, W., et al. (2020). Anti-CD19 mAb-conjugated human serum albumin nanoparticles effectively deliver doxorubicin to B-lymphoblastic leukemia cells. Die Pharmazie, 75(7), 318–323. https://doi.org/10.1691/ph.2020.0026

    Article  CAS  PubMed  Google Scholar 

  340. Liang, Y., Liu, J., Liu, T., & Yang, X. S. (2017). Anti-c-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncology Letters, 14(2), 2254–2260. https://doi.org/10.3892/ol.2017.6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. He, Y. L., Song, W., Lei, J., Li, Z., Cao, J., Huang, S., et al. (2012). Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines. Acta Radiologica, 53(9), 1049–1058. https://doi.org/10.1258/ar.2012.120055

    Article  PubMed  Google Scholar 

  342. Han, X., Wei, Q., Lv, Y., Weng, L., Huang, H. Y., Wei, Q. Y., et al. (2022). Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Molecular Therapy, 30(1), 327–340. https://doi.org/10.1016/j.ymthe.2021.08.028

    Article  CAS  PubMed  Google Scholar 

  343. Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., et al. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal For Clinicians, 61(4), 250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  Google Scholar 

  344. Brown, S. B., Brown, E. A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. The Lancet Oncology, 5(8), 497–508. https://doi.org/10.1016/S1470-2045(04)01529-3

    Article  CAS  PubMed  Google Scholar 

  345. Shibu, E. S., Hamada, M., Murase, N., & Biju, V. (2013). Nanomaterials formulations for photothermal and photodynamic therapy of cancer. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 53–72. https://doi.org/10.1016/j.jphotochemrev.2012.09.004

    Article  CAS  Google Scholar 

  346. Chang, Y. Z., He, L. Z., Li, Z. B., Zeng, L. L., Song, Z. H., Li, P. H., et al. (2017). Designing Core-Shell Gold and Selenium Nanocomposites for Cancer Radiochemotherapy. ACS Nano, 11(5), 4848–4858. https://doi.org/10.1021/acsnano.7b01346

    Article  CAS  PubMed  Google Scholar 

  347. Zhang, X. D., Wu, D., Shen, X., Chen, J., Sun, Y. M., Liu, P. X., et al. (2012). Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 33(27), 6408–6419. https://doi.org/10.1016/j.biomaterials.2012.05.047

    Article  CAS  PubMed  Google Scholar 

  348. Yasui, H., Takeuchi, R., Nagane, M., Meike, S., Nakamura, Y., Yamamori, T., et al. (2014). Radiosensitization of tumor cells through endoplasmic reticulum stress induced by PEGylated nanogel containing gold nanoparticles. Cancer Letters, 347(1), 151–158. https://doi.org/10.1016/j.canlet.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  349. Darwesh, R., Aboushoushah, S. F., Almarhabi, S., Aldahlawi, A. M., & Elbialy, N. S. (2021). TurboBeads magnetic nanoparticles functionalized with gold as a promising nano-radiosensitizer for potential breast cancer radiotherapy: In vitro study. Inorganic Chemistry Communications, 123. https://doi.org/10.1016/j.inoche.2020.108348

  350. Wang, X. H., Niu, X. Y., Sha, W. Z., Feng, X. Y., Yu, L. C., Zhang, Z. J., et al. (2021). An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomaterials Science, 9(18), 6308–6324. https://doi.org/10.1039/d1bm00834j

    Article  CAS  PubMed  Google Scholar 

  351. Alamzadeh, Z., Beik, J., Mirrahimi, M., Shakeri-Zadeh, A., Ebrahimi, F., Komeili, A., et al. (2020). Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. European Journal of Pharmaceutical Sciences, 145. https://doi.org/10.1016/j.ejps.2020.105235

  352. Popovtzer, A., Mizrachi, A., Motiei, M., Bragilovski, D., Lubimov, L., Levi, M., et al. (2016). Actively targeted gold nanoparticles as novel radiosensitizer agents: An in vivo head and neck cancer model. Nanoscale, 8(5), 2678–2685. https://doi.org/10.1039/c5nr07496g

    Article  CAS  PubMed  Google Scholar 

  353. Banu, H., Sethi, D. K., Edgar, A., Sheriff, A., Rayees, N., Renuka, N., et al. (2015). Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. Journal of Photochemistry and Photobiology B-Biology, 149, 116–128. https://doi.org/10.1016/j.jphotobiol.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  354. Liu, J. Y., Ma, W., Kou, W., Shang, L. N., Huang, R., & Zhao, J. (2019). Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Bioscience Reports, 39. https://doi.org/10.1042/bsr2019252

  355. Zhao, N., Yang, Z. R., Li, B. X., Meng, J., Shi, Z. L., Li, P., et al. (2016). RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. International Journal of Nanomedicine, 11, 5595–5610. https://doi.org/10.2147/ijn.S104034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Xu, W., Luo, T., Li, P., Zhou, C., Cui, D., Pang, B., et al. (2012). RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating α(v)β3 expression. International Journal of Nanomedicine, 7, 915–924. https://doi.org/10.2147/ijn.S28314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Vilchis-Juarez, A., Ferro-Flores, G., Santos-Cuevas, C., Morales-Avila, E., Ocampo-Garcia, B., Diaz-Nieto, L., et al. (2014). Molecular targeting radiotherapy with cyclo-RGDfK(C) peptides conjugated to Lu-177-labeled gold nanoparticles in tumor-bearing mice. Journal of Biomedical Nanotechnology, 10(3), 393–404. https://doi.org/10.1166/jbn.2014.1721

    Article  CAS  PubMed  Google Scholar 

  358. Ding, Y., Sun, Z. Q., Tong, Z. R., Zhang, S. T., Min, J., Xu, Q. H., et al. (2020). Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics, 10(12), 5195–5208. https://doi.org/10.7150/thno.45017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Zhang, X. Y., Wang, H., Coulter, J. A., & Yang, R. J. (2018). Octaarginine-modified gold nanoparticles enhance the radiosensitivity of human colorectal cancer cell line LS180 to megavoltage radiation. International Journal of Nanomedicine, 13, 3541–3552. https://doi.org/10.2147/ijn.S161157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Liu, S., Li, H., Xia, L. Y., Xu, P. P., Ding, Y., Huo, D., et al. (2017). Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials, 141, 1–12. https://doi.org/10.1016/j.biomaterials.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  361. Liu, J., Liang, Y., Liu, T., Li, D. K., & Yang, X. S. (2015). Anti-EGFR-conjugated hollow gold nanospheres enhance radiocytotoxic targeting of cervical cancer at megavoltage radiation energies. Nanoscale Research Letters, 10. https://doi.org/10.1186/s11671-015-0923-2

  362. Wang, C. H., Li, X. H., Wang, Y., Liu, Z., Fu, L., & Hu, L. K. (2013). Enhancement of radiation effect and increase of apoptosis in lung cancer cellsS by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. Journal of Nanoparticle Research, 15(5). https://doi.org/10.1007/s11051-013-1642-1

  363. Geng, F., Song, K., Xing, J. Z., Yuan, C. Z., Yan, S., Yang, Q. F., et al. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22(28). https://doi.org/10.1088/0957-4484/22/28/285101

  364. Liu, T., Shi, C. Z., Duan, L. Q., Zhang, Z. H., Luo, L. P., Goel, S., et al. (2018). A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. Journal of Materials Chemistry B, 6(29), 4756–4764. https://doi.org/10.1039/c8tb01398e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Tian, J. X., Weil, X. Y., Zhang, W. H., & Xu, A. G. (2020). Effects of selenium nanoparticles combined with radiotherapy on lung cancer cells. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.598997

  366. Chan, L., He, L., Zhou, B., Guan, S., Bo, M., Yang, Y., et al. (2017). Cancer-targeted selenium nanoparticles sensitize cancer cells to continuous γ radiation to achieve synergetic chemo-radiotherapy. Chemistry - An Asian Journal, 12(23), 3053–3060. https://doi.org/10.1002/asia.201701227

    Article  CAS  PubMed  Google Scholar 

  367. Yang, Y. H., Xie, Q., Zhao, Z. N., He, L. Z., Chan, L., Liu, Y. X., et al. (2017). Functionalized selenium nanosystem as radiation sensitizer of I-125 seeds for precise cancer therapy. ACS Applied Materials & Interfaces, 9(31), 25857–25869. https://doi.org/10.1021/acsami.7b07167

    Article  CAS  Google Scholar 

  368. Chen, F., Zhang, X. H., Hu, X. D., Liu, P. D., & Zhang, H. Q. (2018). The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artificial Cells Nanomedicine and Biotechnology, 46(5), 937–948. https://doi.org/10.1080/21691401.2017.1347941

    Article  CAS  PubMed  Google Scholar 

  369. Abozaid, O. A. R., Rashed, L. A., El-Sonbaty, S. M., Abu-Elftouh, A. I., & Ahmed, E. S. A. Mesenchymal stem cells and selenium nanoparticles synergize with low dose of gamma radiation to suppress mammary gland carcinogenesis via regulation of tumor microenvironment. Biological Trace Element Research. https://doi.org/10.1007/s12011-022-03146-1

  370. Zangeneh, M., Nedaei, H. A., Mozdarani, H., Mahmoudzadeh, A., & Salimi, M. (2019). Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Materials Science & Engineering C-Materials for Biological Applications, 103. https://doi.org/10.1016/j.msec.2019.109739

  371. Arab-Bafrani, Z., Zabihi, E., Jafari, S. M., Khoshbin-Khoshnazar, A., Mousavi, E., Khalili, M., et al. (2021). Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents. International Journal of Pharmaceutics, 605. https://doi.org/10.1016/j.ijpharm.2021.120828

  372. Ghaleh, H. E. G., Zarei, L., Motlagh, B. M., & Jabbari, N. (2019). Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: Synergistic effect in cancer therapy. Artificial Cells Nanomedicine and Biotechnology, 47(1), 1396–1403. https://doi.org/10.1080/21691401.2019.1600529

    Article  CAS  Google Scholar 

  373. Yi, X., Chen, L., Chen, J., Maiti, D., Chai, Z. F., Liu, Z., et al. (2018). Biomimetic copper sulfide for chemo-radiotherapy: Enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Advanced Functional Materials, 28(9). https://doi.org/10.1002/adfm.201705161

  374. Fan, Y., Zhang, J. L., Shi, M. H., Li, D., Lu, C. H., Cao, X. Y., et al. (2019). Poly(amidoamine) Dendrimer-coordinated copper(II) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis. Nano Letters, 19(2), 1216–1226. https://doi.org/10.1021/acs.nanolett.8b04757

    Article  CAS  PubMed  Google Scholar 

  375. Movahedi, M. M., Alamzadeh, Z., Hosseini-Nami, S., Shakeri-Zadeh, A., Taheripak, G., Ahmadi, A., et al. (2020). Investigating the mechanisms behind extensive death in human cancer cells following nanoparticle assisted photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy, 29. https://doi.org/10.1016/j.pdpdt.2019.101600

  376. Duval, K. E. A., Vernice, N. A., Wagner, R. J., Fiering, S. N., Petryk, J. D., Lowry, G. J., et al. (2019). Immunogenetic effects of low dose (CEM43 30) magnetic nanoparticle hyperthermia and radiation in melanoma cells. International Journal of Hyperthermia, 36, 37–46. https://doi.org/10.1080/02656736.2019.1627433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Hadi, F., Tavakkol, S., Laurent, S., Pirhajati, V., Mahdavi, S. R., Neshastehriz, A., et al. (2019). Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. Journal of Cellular Physiology, 234(11), 20028–20035. https://doi.org/10.1002/jcp.28599

    Article  CAS  PubMed  Google Scholar 

  378. Li, Y., Yang, J., Gu, G., Guo, X., He, C., Sun, J., et al. (2022). Pulmonary delivery of theranostic nanoclusters for lung cancer ferroptosis with enhanced chemodynamic/radiation synergistic therapy. Nano Letters, 22(3), 963–972. https://doi.org/10.1021/acs.nanolett.1c03786

    Article  CAS  PubMed  Google Scholar 

  379. Ma, J., Zhang, Z. P., Zhang, Z. J., Huang, J., Qin, Y., Li, X., et al. (2015). Magnetic nanoparticle clusters radiosensitise human nasopharyngeal and lung cancer cells after alternating magnetic field treatment. International Journal of Hyperthermia, 31(7), 800–812. https://doi.org/10.3109/02656736.2015.1063168

    Article  CAS  PubMed  Google Scholar 

  380. Salem, M. L., Gemeay, A., Gomaa, S., Aldubayan, M. A., & Assy, L. (2020). Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. Journal of Nanoparticle Research, 22(8). https://doi.org/10.1007/s11051-020-04932-5

  381. Shetake, N. G., Kumar, A., & Pandey, B. N. (2019). Iron-oxide nanoparticles target intracellular HSP90 to induce tumor radio-sensitization. Biochimica Et Biophysica Acta-General Subjects, 1863(5), 857–869. https://doi.org/10.1016/j.bbagen.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  382. Wason, M. S., Lu, H., Yu, L., Lahiri, S. K., Mukherjee, D., Shen, C., et al. (2018). Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers, 10(9). https://doi.org/10.3390/cancers10090303

  383. Wason, M. S., Colon, J., Das, S., Seal, S., Turkson, J., Zhao, J. H., et al. (2013). Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine-Nanotechnology Biology and Medicine, 9(4), 558–569. https://doi.org/10.1016/j.nano.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  384. Chen, F., Zhang, X. H., Hu, X. D., Zhang, W., Lou, Z. C., Xie, L. H., et al. (2015). Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells. International Journal of Nanomedicine, 10, 4957–4969. https://doi.org/10.2147/ijn.S82980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Azizi, S., Ghasemi, A., Asgarian-Omran, H., Zal, Z., Montazeri, A., Yazdannejat, H., et al. (2018). Cerium oxide nanoparticles sensitize non-small lung cancer cell to ionizing radiation. Marmara Pharmaceutical Journal, 22(2), 307–313. https://doi.org/10.12991/mpj.2018.68

    Article  CAS  Google Scholar 

  386. Li, F. F., Li, Z. H., Jin, X. D., Liu, Y., Zhang, P. C., Li, P., et al. (2019). Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. International Journal of Nanomedicine, 14, 2415–2431. https://doi.org/10.2147/ijn.S193676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Tamborini, M., Locatelli, E., Rasile, M., Monaco, I., Rodighiero, S., Corradini, I., et al. (2016). A combined approach employing chlorotoxin-nanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma. ACS Nano, 10(2), 2509–2520. https://doi.org/10.1021/acsnano.5b07375

    Article  CAS  PubMed  Google Scholar 

  388. Shin, S. W., Yang, K., Lee, M., Moon, J., Son, A., Kim, Y., et al. (2021). Manganese ferrite nanoparticles enhance the sensitivity of Hepa1–6 hepatocellular carcinoma to radiation by remodeling tumor microenvironments. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052637

  389. Abbasi, A. Z., Gordijo, C. R., Amini, M. A., Maeda, A., Rauth, A. M., DaCosta, R. S., et al. (2016). Hybrid manganese dioxide nanoparticles potentiate radiation therapy by modulating tumor hypoxia. Cancer Research, 76(22), 6643–6656. https://doi.org/10.1158/0008-5472.Can-15-3475

    Article  CAS  PubMed  Google Scholar 

  390. Prasad, P., Gordijo, C. R., Abbasi, A. Z., Maeda, A., Ip, A., Rauth, A. M., et al. (2014). Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano, 8(4), 3202–3212. https://doi.org/10.1021/nn405773r

    Article  CAS  PubMed  Google Scholar 

  391. Zhu, C., Ma, Q., Gong, L., Di, S., Gong, J., Wang, Y., et al. (2022). Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. [Article]. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2022.01.019

  392. Jia, Y. J., Weng, Z. Y., Wang, C. Y., Zhu, M. J., Lu, Y. S., Ding, L. L., et al. (2017). Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes. Oncology Letters, 13(1), 206–214. https://doi.org/10.3892/ol.2016.5402

    Article  CAS  PubMed  Google Scholar 

  393. Askar, M. A., Thabet, N. M., El-Sayyad, G. S., El-Batal, A. I., Abd Elkodous, M., El Shawi, O. E., et al. (2021). Dual hyaluronic acid and folic acid targeting pH-sensitive multifunctional 2DG@DCA@MgO-nano-core-shell-radiosensitizer for breast cancer therapy. Cancers, 13(21). https://doi.org/10.3390/cancers13215571

  394. Shirvalilou, S., Khoei, S., Khoee, S., Mahdavi, S. R., Raoufi, N. J., Motevalian, M., et al. (2020). Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. Journal of Photochemistry and Photobiology B-Biology, 205. https://doi.org/10.1016/j.jphotobiol.2020.111827

  395. Peng, X., Yang, C., Kong, X., Xiang, Y., Dai, W., & Quan, H. (2020). Multifunctional nanocomposites MGO/FU-MI inhibit the proliferation of tumor cells and enhance the effect of chemoradiotherapy in vivo and in vitro. Clinical & Translational Oncology, 22(10), 1875–1884. https://doi.org/10.1007/s12094-020-02331-9

    Article  CAS  Google Scholar 

  396. Liu, R. X., Gong, L. J., Zhu, X. Y., Zhu, S., Wu, X. C., Xue, T. Y., et al. Transformable gallium-based liquid metal nanoparticles for tumor radiotherapy sensitization. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202102584

  397. Dou, Y., Zhao, F. S., Li, X., & Guo, Y. Y. (2021). Monitoring nitric oxide-induced hypoxic tumor radiosensitization by radiation-activated nanoagents under BOLD/DWI imaging. ACS Biomaterials Science & Engineering, 7(11), 5242–5254. https://doi.org/10.1021/acsbiomaterials.1c00543

    Article  CAS  Google Scholar 

  398. Li, S. Y., Sun, W. J., Luo, Y., Gao, Y. P., Jiang, X. P., Yuan, C., et al. (2021). Hollow PtCo alloy nanospheres as a high-Z and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. Journal of Materials Chemistry B, 9(23), 4643–4653. https://doi.org/10.1039/d1tb00486g

    Article  CAS  PubMed  Google Scholar 

  399. Sun, M. D., Zhang, Y., He, Y., Xiong, M. H., Huang, H. Y., Pei, S. C., et al. (2019). Green synthesis of carrier-free curcumin nanodrugs for light-activated breast cancer photodynamic therapy. Colloids and Surfaces B-Biointerfaces, 180, 313–318. https://doi.org/10.1016/j.colsurfb.2019.04.061

    Article  CAS  PubMed  Google Scholar 

  400. Khorsandi, K., Hosseinzadeh, R., & Shahidi, F. K. (2019). Photodynamic treatment with anionic nanoclays containing curcumin on human triple-negative breast cancer cells: Cellular and biochemical studies. Journal of Cellular Biochemistry, 120(4), 4998–5009. https://doi.org/10.1002/jcb.27775

    Article  CAS  PubMed  Google Scholar 

  401. Askar, M. A., El Shawi, O. E., Abou Zaid, O. A. R., Mansour, N. A., & Hanafy, A. M. (2021). Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumour Biology, 43(1), 225–247. https://doi.org/10.3233/tub-211506

    Article  PubMed  Google Scholar 

  402. Castro, F., Pinto, M. L., Pereira, C. L., Serre, K., Barbosa, M. A., Vermaelen, K., et al. (2020). Chitosan/gamma-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 257. https://doi.org/10.1016/j.biomaterials.2020.120218

  403. Yu, Y. X., Xu, S., You, H., Zhang, Y. J., Yang, B., Sun, X. Y., et al. (2017). In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Delivery, 24(1), 75–82. https://doi.org/10.1080/10717544.2016.1230902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Bhardwaj, P., Gota, V., Vishwakarma, K., Pai, V., Chaudhari, P., Mohanty, B., et al. (2022). Loco-regional radiosensitizing nanoparticles-in-gel augments head and neck cancer chemoradiotherapy. Journal of Controlled Release, 343, 288–302. https://doi.org/10.1016/j.jconrel.2022.01.040

    Article  CAS  PubMed  Google Scholar 

  405. He, Z., Jiang, H., Zhang, X., Zhang, H., Cui, Z., Sun, L., et al. (2020). Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer. Pharmacological Research, 160, 105184. https://doi.org/10.1016/j.phrs.2020.105184

    Article  PubMed  Google Scholar 

  406. Zhang, T., Liu, H., Li, L., Guo, Z. Y., Song, J., Yang, X. Y., et al. (2021). Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioactive Materials, 6(11), 3865–3878. https://doi.org/10.1016/j.bioactmat.2021.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Park, J., Park, S. S., Lee, K. J., Ju, E. J., Shin, S. H., Ko, E. J., et al. (2018). Docetaxel-polymeric nanoparticle enhances radiotherapeutic efficacy in human pancreatic cancer. Translational Cancer Research, 7(1), 60–67. https://doi.org/10.21037/tcr.2018.01.09

    Article  CAS  Google Scholar 

  408. Jiang, D., Xu, M. J., Pei, Y. Y., Huang, Y. K., Chen, Y., Ma, F. F., et al. (2019). Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer. Acta Biomaterialia, 88, 406–421. https://doi.org/10.1016/j.actbio.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  409. Yang, H. L., Zhao, P., Zhou, Y. G., Li, Q. Y., Cai, W. B., Zhao, Z. X., et al. (2021). Preparation of multifunctional nanobubbles and their application in bimodal imaging and targeted combination therapy of early pancreatic cancer. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82602-9

  410. Au, K. M., Min, Y. Z., Tian, X., Zhang, L. Z., Perello, V., Caster, J. M., et al. (2015). Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano, 9(9), 8976–8996. https://doi.org/10.1021/acsnano.5b02913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Liang, B. J., Pigula, M., Baglo, Y., Najafali, D. A., Hasan, T., & Huang, H. C. (2020). Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-019-0560-5

  412. Gangopadhyay, M., Mukhopadhyay, S. K., Karthik, S., Barman, S., & Singh, N. D. P. (2015). Targeted photoresponsive TiO2-coumarin nanoconjugate for efficient combination therapy in MDA-MB-231 breast cancer cells: Synergic effect of photodynamic therapy (PDT) and anticancer drug chlorambucil. Medchemcomm, 6(5), 769–777. https://doi.org/10.1039/c4md00481g

    Article  CAS  Google Scholar 

  413. Zong, J. J., Peng, H., Qing, X., Fan, Z., Xu, W. J., Du, X. L., et al. (2021). pH-responsive pluronic F127-lenvatinib-encapsulated halogenated boron-dipyrromethene nanoparticles for combined photodynamic therapy and chemotherapy of liver cancer. ACS Omega, 6(18), 12331–12342. https://doi.org/10.1021/acsomega.1c01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Liu, S., Liu, H., Sun, H., Deng, S., Yue, L., Weng, Z., et al. (2022). (cRGD)2 peptides modified nanoparticles increase tumor-targeting therapeutic effects by co-delivery of albendazole and iodine-131. Anti-Cancer Drugs, 33(1), 19–29. https://doi.org/10.1097/cad.0000000000001135

    Article  CAS  PubMed  Google Scholar 

  415. Poudel, K., Banstola, A., Gautam, M., Soe, Z. C., Pham, L. M., Jeong, J. H., et al. (2021). Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer. Nanoscale, 13(2), 1231–1247. https://doi.org/10.1039/d0nr07736d

    Article  CAS  PubMed  Google Scholar 

  416. Zhang, X. J., Liu, N. L., Shao, Z. Y., Qiu, H., Yao, H., Ji, J. Y., et al. (2017). Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine-Nanotechnology Biology and Medicine, 13(4), 1309–1321. https://doi.org/10.1016/j.nano.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  417. Villa, I., Villa, C., Crapanzano, R., Secchi, V., Tawfilas, M., Trombetta, E., et al. (2021). Functionalized scintillating nanotubes for simultaneous radio- and photodynamic therapy of cancer. ACS Applied Materials & Interfaces, 13(11), 12997–13008. https://doi.org/10.1021/acsami.1c02504

    Article  CAS  Google Scholar 

  418. Lan, J. S., Liu, L., Zeng, R. F., Qin, Y. H., Hou, J. W., Xie, S. S., et al. (2021). Tumor-specific carrier-free nanodrugs with GSH depletion and enhanced ROS generation for endogenous synergistic anti-tumor by a chemotherapy-photodynamic therapy. Chemical Engineering Journal, 407. https://doi.org/10.1016/j.cej.2020.127212

  419. Chen, Y. Y., Zhong, H., Wang, J. B., Wan, X. Y., Li, Y. H., Pan, W., et al. (2019). Catalase-like metal-organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chemical Science, 10(22), 5773–5778. https://doi.org/10.1039/c9sc00747d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Mehtala, J. G., Torregrosa-Allen, S., Elzey, B. D., Jeon, M., Kim, C., & Wei, A. (2014). Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine, 9(13), 1939–1955. https://doi.org/10.2217/nnm.13.209

    Article  CAS  PubMed  Google Scholar 

  421. Siahmansouri, H., Somi, M. H., Babaloo, Z., Baradaran, B., Jadidi-Niaragh, F., Atyabi, F., et al. (2016). Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. Journal of Pharmacy and Pharmacology, 68(9), 1119–1130. https://doi.org/10.1111/jphp.12593

    Article  CAS  PubMed  Google Scholar 

  422. Zheng, X., Zhao, Y. W., Jia, Y., Shao, D., Zhang, F., Sun, M. D., et al. (2021). Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 271. https://doi.org/10.1016/j.biomaterials.2021.120716

  423. Zhang, H. Y., Yi, Z., Sun, Z., Ma, X. M., & Li, X. D. (2017). Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment. Journal of Materials Chemistry B, 5(36), 7622–7631. https://doi.org/10.1039/c7tb01323j

    Article  CAS  PubMed  Google Scholar 

  424. Ray, L., Kumar, P., & Gupta, K. C. (2013). The activity against Ehrlich’s ascites tumors of doxorubicin contained in self assembled, cell receptor targeted nanoparticle with simultaneous oral delivery of the green tea polyphenol epigallocatechin-3-gallate. Biomaterials, 34(12), 3064–3076. https://doi.org/10.1016/j.biomaterials.2012.12.044

    Article  CAS  PubMed  Google Scholar 

  425. Mahjoub, M. A., Bakhshinejad, B., Sadeghizadeh, M., & Babashah, S. (2017). Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network. Molecular Biology Reports, 44(4), 341–351. https://doi.org/10.1007/s11033-017-4115-2

    Article  CAS  PubMed  Google Scholar 

  426. Yaghoubi, F., Naghib, S. M., Motlagh, N. S. H., Haghiralsadat, F., Jaliani, H. Z., Tofighi, D., et al. (2021). Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy. Nanotechnology Reviews, 10(1), 1838–1852. https://doi.org/10.1515/ntrev-2021-0110

    Article  CAS  Google Scholar 

  427. Li, M. X., Liu, P., Gao, G. H., Deng, J. Z., Pan, Z. Y., Wu, X., et al. (2015). Smac therapeutic peptide nanoparticles inducing apoptosis of cancer cells for combination chemotherapy with doxorubicin. ACS Applied Materials & Interfaces, 7(15), 8005–8012. https://doi.org/10.1021/acsami.5b00329

    Article  CAS  Google Scholar 

  428. Nejabat, M., Eisvand, F., Soltani, F., Alibolandi, M., Taghdisi, S. M., Abnous, K., et al. (2020). Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. International Journal of Pharmaceutics, 587. https://doi.org/10.1016/j.ijpharm.2020.119650

  429. Astani, S., Salehi, R., Massoumi, B., & Massoudi, A. (2021). Co-delivery of cisplatin and doxorubicin by carboxylic acid functionalized poly (hydroxyethyl methacrylate)/reduced graphene nanocomposite for combination chemotherapy of breast cancer cells. Journal of Biomaterials Science-Polymer Edition, 32(5), 657–677. https://doi.org/10.1080/09205063.2020.1855393

    Article  CAS  PubMed  Google Scholar 

  430. Wang, R. N., Yang, Y. J., Yang, M. M., Yuan, D. D., Huang, J. Y., Chen, R., et al. (2020). Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-00679-2

  431. Sun, P. C., Zhang, N., Tang, Y. F., Yang, Y. N., Chu, X., & Zhao, Y. X. (2017). SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. International Journal of Nanomedicine, 12, 2657–2672. https://doi.org/10.2147/ijn.S132929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Li, J. X., Zhang, L. M., Liu, C. C., Wu, Q. N., Li, S. P., Lei, X. P., et al. (2021). Doxorubicin-loaded hydrogen peroxide self-providing copper nanodots for combination of chemotherapy and acid-induced chemodynamic therapy against breast cancer. Journal of Colloid and Interface Science, 593, 323–334. https://doi.org/10.1016/j.jcis.2021.02.085

    Article  CAS  PubMed  Google Scholar 

  433. Krishnan, V., Dharamdasani, V., Bakre, S., Dhole, V., Wu, D. B., Budnik, B., et al. (2022). Hyaluronic acid nanoparticles for immunogenic chemotherapy of leukemia and T-cell lymphoma. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020466

  434. Liu, J., Zheng, J. X., Nie, H. F., Chen, H. N., Li, B. F., & Jia, L. (2020). Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer.Chemical Engineering Journal, 381. https://doi.org/10.1016/j.cej.2019.122541

  435. Lee, K. W., Jeong, D., & Na, K. (2013). Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydrate Polymers, 94(2), 850–856. https://doi.org/10.1016/j.carbpol.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  436. Zou, L., Liu, X. W., Li, J. J., Li, W., Zhang, L. L., Fu, C. M., et al. (2021). Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics, 11(9), 4171–4186. https://doi.org/10.7150/thno.42260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  437. Zhang, C., Zhao, Y., Zhang, E., Jiang, M., Zhi, D., Chen, H., et al. (2020). Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Delivery, 27(1), 1397–1411. https://doi.org/10.1080/10717544.2020.1827085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Huo, M. R., Wang, H. L., Zhang, Y., Cai, H., Zhang, P., Li, L. C., et al. (2020). Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. Journal of Controlled Release, 321, 198–210. https://doi.org/10.1016/j.jconrel.2020.02.017

    Article  CAS  PubMed  Google Scholar 

  439. Hariri, G., Edwards, A. D., Merrill, T. B., Greenbaum, J. M., van der Ende, A. E., & Harth, E. (2014). Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked “nanosponge” network for lung cancer chemotherapy. Molecular Pharmaceutics, 11(1), 265–275. https://doi.org/10.1021/mp400432b

    Article  CAS  PubMed  Google Scholar 

  440. Pal, M. K., Jaiswar, S. P., Dwivedi, A., Goyal, S., Dwivedi, V. N., Pathak, A. K., et al. (2017). Synergistic effect of graphene oxide coated nanotised apigenin with paclitaxel (GO-NA/PTX): A ROS dependent mitochondrial mediated apoptosis in ovarian cancer. Anti-Cancer Agents in Medicinal Chemistry, 17(12), 1721–1732. https://doi.org/10.2174/1871520617666170425094549

    Article  CAS  PubMed  Google Scholar 

  441. Lin, Y. W., Raj, E. N., Liao, W. S., Lin, J., Liu, K. K., Chen, T. H., et al. (2017). Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-09983-8

  442. Lv, J., Xie, M. Q., Zhao, S. F., Qiu, W. S., Wang, S. S., & Cao, M. M. (2021). Synergetic fabrication of hybrid drug formulation using biodegradable tri-block copolymeric liquid nanoparticle delivery for gastric cancer chemotherapy. Journal of Molecular Liquids, 340. https://doi.org/10.1016/j.molliq.2021.117066.

  443. Xiong, K., Zhang, Y., Wen, Q., Luo, J., Lu, Y., Wu, Z. X., et al. (2020). Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy.International Journal of Pharmaceutics, 589. https://doi.org/10.1016/j.ijpharm.2020.119875

  444. Cui, X. J., Sun, Y., Shen, M., Song, K. Q., Yin, X., Di, W., et al. (2018). Enhanced chemotherapeutic efficacy of paclitaxel nanoparticles co-delivered with microRNA-7 by Inhibiting paclitaxel-induced EGFR/ERK pathway activation for ovarian cancer therapy. ACS Applied Materials & Interfaces, 10(9), 7821–7831. https://doi.org/10.1021/acsami.7b19183

    Article  CAS  Google Scholar 

  445. Ji, Z., Xu, J., Li, M., Wang, H., Xu, B., Yang, Y., et al. (2022). The mechanisms of immune-chemotherapy with nanocomplex codelivery of pTRP-2 and adjuvant of paclitaxel against melanoma. Drug Development and Industrial Pharmacy, 1–19. https://doi.org/10.1080/03639045.2022.2045306

  446. Wiwatchaitawee, K., Mekkawy, A. I., Quarterman, J. C., Naguib, Y. W., Ebeid, K., Geary, S. M., et al. The MEK 1/2 inhibitor PD98059 exhibits synergistic anti-endometrial cancer activity with paclitaxel in vitro and enhanced tissue distribution in vivo when formulated into PAMAM-coated PLGA-PEG nanoparticles. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-021-01065-7

  447. Zhou, Z. H., Liang, S. Y., Zhao, T. C., Chen, X. Z., Cao, X. K., Qi, M., et al. (2021). Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. Journal of Nanobiotechnology, 19(1). https://doi.org/10.1186/s12951-021-00901-9

  448. Singh, M., Bhatnagar, P., Srivastava, A. K., Kumar, P., Shukla, Y., & Gupta, K. C. (2011). Enhancement of cancer chemosensitization potential of cisplatin by tea polyphenols poly(lactide-co-glycolide) nanoparticles. Journal of Biomedical Nanotechnology, 7(1), 202–202. https://doi.org/10.1166/jbn.2011.1268

    Article  CAS  PubMed  Google Scholar 

  449. Ding, F., Zhang, L. P., Chen, H., Song, H. Q., Chen, S. G., & Xiao, H. H. (2020). Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horizons, 5(6), 999–1015. https://doi.org/10.1039/d0nh00148a

    Article  CAS  PubMed  Google Scholar 

  450. Sun, Y., Yang, J. Y., Yang, T., Li, Y. F., Zhu, R. Y., Hou, Y. H., et al. (2021). Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomaterialia, 128, 447–461. https://doi.org/10.1016/j.actbio.2021.04.034

    Article  CAS  PubMed  Google Scholar 

  451. Moghaddam, S. V., Abedi, F., Alizadeh, E., Baradaran, B., Annabi, N., Akbarzadeh, A., et al. (2020). Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydrate Polymers, 250. https://doi.org/10.1016/j.carbpol.2020.116861

  452. Lai, K. C., Chueh, F. S., Hsiao, Y. T., Cheng, Z. Y., Lien, J. C., Liu, K. C., et al. (2019). Gefitinib and curcumin-loaded nanoparticles enhance cell apoptosis in human oral cancer SAS cells in vitro and inhibit SAS cell xenografted tumor in vivo. Toxicology and Applied Pharmacology, 382. https://doi.org/10.1016/j.taap.2019.114734

  453. Lotfi-Attari, J., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Alipour, S., Farajzadeh, R., Javidfar, S., et al. (2017). Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutrition and Cancer-an International Journal, 69(8), 1290–1299. https://doi.org/10.1080/01635581.2017.1367932

    Article  CAS  Google Scholar 

  454. Javan, N., Ansari, M. H. K., Dadashpour, M., Khojastehfard, M., Bastami, M., Rahmati-Yamchi, M., et al. (2019). Synergistic antiproliferative effects of Co-nanoencapsulated curcumin and chrysin on MDA-MB-231 breast cancer cells through upregulating miR-132 and miR-502c. Nutrition and Cancer-an International Journal, 71(7), 1201–1213. https://doi.org/10.1080/01635581.2019.1599968

    Article  CAS  Google Scholar 

  455. Hu, B., Sun, D., Sun, C., Sun, Y. F., Sun, H. X., Zhu, Q. F., et al. (2015). A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 468(4), 525–532. https://doi.org/10.1016/j.bbrc.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  456. Banerjee, S., Sahoo, A. K., Chattopadhyay, A., & Ghosh, S. S. (2014). Recombinant I kappa B alpha-loaded curcumin nanoparticles for improved cancer therapeutics. Nanotechnology, 25(34). https://doi.org/10.1088/0957-4484/25/34/345102

  457. Thao, D. T., Nga, N. T., Van, N. A., & Hung, K. D. (2019). Potential anticancer activities of a combination of curcumin, ginger oleoresin, and rutin solid lipid nanoparticles (Vietlife-Antican) in LLC tumor-bearing mice. Natural Product Communications, 14(6). https://doi.org/10.1177/1934578x19858461

  458. Srivastava, S., Mohammad, S., Gupta, S., Mahdi, A. A., Dixit, R. K., Singh, V., et al. (2018). Chemoprotective effect of nanocurcumin on 5-fluorouracil-induced-toxicity toward oral cancer treatment. National Journal of Maxillofacial Surgery, 9(2), 160. https://doi.org/10.4103/njms.NJMS_27_18

    Article  PubMed  PubMed Central  Google Scholar 

  459. Qu, W. H., Yang, Q. J., Wang, G. C., Wang, Z. H., Huang, P., Huang, W., et al. (2020). Amphiphilic irinotecan-melampomagnolide B conjugate nanoparticles for cancer chemotherapy. Rsc Advances, 10(15), 8958–8966. https://doi.org/10.1039/d0ra00912a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Elgohary, M. M., Helmy, M. W., Mortada, S. M., & Elzoghby, A. O. (2018). Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine, 13(17), 2221–2244. https://doi.org/10.2217/nnm-2018-0097

    Article  CAS  PubMed  Google Scholar 

  461. Kamel, N. M., Helmy, M. W., Samaha, M. W., Ragab, D., & Elzoghby, A. O. (2019). Multicompartmental lipid-protein nanohybrids for combined tretinoin/herbal lung cancer therapy. Nanomedicine, 14(18), 2461-+. https://doi.org/10.2217/nnm-2019-0090

    Article  CAS  PubMed  Google Scholar 

  462. Singh, R. P., Sharma, G., Sonali, Singh, S., Kumar, M., Pandey, B. L., et al. (2016). Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids and Surfaces B-Biointerfaces, 141, 429–442. https://doi.org/10.1016/j.colsurfb.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  463. Wu, Y. L., Liu, J. P., Movahedi, F., Gu, W. Y., Xu, T. F., & Xu, Z. P. (2020). Enhanced prevention of breast tumor metastasis by nanoparticle-delivered vitamin e in combination with interferon-gamma. Advanced Healthcare Materials, 9(6). https://doi.org/10.1002/adhm.201901706

  464. El-Lakany, S. A., Elgindy, N. A., Helmy, M. W., Abu-Serie, M. M., & Elzoghby, A. O. (2018). Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opinion on Drug Delivery, 15(9), 835–850. https://doi.org/10.1080/17425247.2018.1505858

    Article  CAS  PubMed  Google Scholar 

  465. Maroufi, N. F., Vahedian, V., Mazrakhondi, S. A. M., Kooti, W., Khiavy, H. A., Bazzaz, R., et al. (2020). Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn-Schmiedebergs Archives of Pharmacology, 393(1), 1–11. https://doi.org/10.1007/s00210-019-01692-5

    Article  CAS  PubMed  Google Scholar 

  466. Deepika, M. S., Thangam, R., Sheena, T. S., Vimala, R. T. V., Sivasubramanian, S., Jeganathan, K., et al. (2019). Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Materials Science & Engineering C-Materials for Biological Applications, 103. https://doi.org/10.1016/j.msec.2019.05.001

  467. Snima, K. S., Nair, R. S., Nair, S. V., Kamath, C. R., & Lakshmanan, V. K. (2015). Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy. Journal of Biomedical Nanotechnology, 11(1), 93–104. https://doi.org/10.1166/jbn.2015.1877

    Article  CAS  PubMed  Google Scholar 

  468. Mogheri, F., Jokar, E., Afshin, R., Akbari, A. A., Dadashpour, M., Firouzi-amandi, A., et al. (2021). Co-delivery of metformin and silibinin in dual-drug loaded nanoparticles synergistically improves chemotherapy in human non-small cell lung cancer A549 cells. Journal of Drug Delivery Science and Technology, 66. https://doi.org/10.1016/j.jddst.2021.102752

  469. Mahira, S., Kommineni, N., Husain, G. M., & Khan, W. (2019). Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomedicine & Pharmacotherapy, 110, 803–817. https://doi.org/10.1016/j.biopha.2018.11.145

    Article  CAS  Google Scholar 

  470. Sun, X. P., Veeraraghavan, V. P., Surapaneni, K. M., Hussain, S., Mathanmohun, M., Alharbi, S. A., et al. (2021). Eugenol-piperine loaded polyhydroxy butyrate/polyethylene glycol nanocomposite-induced apoptosis and cell death in nasopharyngeal cancer (C666–1) cells through the inhibition of the PI3K/AKT/mTOR signaling pathway. Journal of Biochemical and Molecular Toxicology, 35(4). https://doi.org/10.1002/jbt.22700

  471. Garg, N. K., Tyagi, R. K., Sharma, G., Jain, A., Singh, B., Jain, S., et al. (2017). Functionalized lipid-polymer hybrid nanoparticles mediated codelivery of methotrexate and aceclofenac: A synergistic effect in breast cancer with improved pharmacokinetics attributes. Molecular Pharmaceutics, 14(6), 1883–1897. https://doi.org/10.1021/acs.molpharmaceut.6b01148

    Article  CAS  PubMed  Google Scholar 

  472. Hu, N., Yin, J. F., Ji, Z., Hong, Y. D., Wu, P. Y., Bian, B. X., et al. (2017). Strengthening gastric cancer therapy by trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cellular Physiology and Biochemistry, 44(6), 2158–2173. https://doi.org/10.1159/000485955

    Article  CAS  PubMed  Google Scholar 

  473. Li, C., Hu, J. Q., Li, W. Y., Song, G. S., & Shen, J. (2017). Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomaterials Science, 5(1), 77–88. https://doi.org/10.1039/c6bm00449k

    Article  CAS  Google Scholar 

  474. Ding, S., Xiong, J., Lei, D., Zhu, X. L., & Zhang, H. J. (2018). Recombinant nanocomposites by the clinical drugs of Abraxane (R) and Herceptin (R) as sequentially dual-targeting therapeutics for breast cancer. Journal of Cancer, 9(3), 502–511. https://doi.org/10.7150/jca.22163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  475. El-Leithy, E. S., Hassan, S. A., & Abdel-Rashid, R. S. (2019). Tamoxifen citrate/coenzyme Q10 as smart nanocarriers bitherapy for breast cancer: Cytotoxicity, genotoxicity, and antioxidant activity. Journal of Drug Delivery Science and Technology, 51, 36–44. https://doi.org/10.1016/j.jddst.2019.02.010

    Article  CAS  Google Scholar 

  476. Chang, Y., Wu, F., Pandey, N. K., Chudal, L., Xing, M. Y., Zhang, X. L., et al. (2020). Combination of disulfiram and copper-cysteamine nanoparticles for an enhanced antitumor effect on esophageal cancer. Acs Applied Bio Materials, 3(10), 7147–7157. https://doi.org/10.1021/acsabm.0c00949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Huang, P., Wang, G. C., Wang, Z. H., Zhang, C. C., Wang, F. M., Cui, X. X., et al. (2020). Floxuridine-chlorambucil conjugate nanodrugs for ovarian cancer combination chemotherapy. Colloids and Surfaces B-Biointerfaces, 194. https://doi.org/10.1016/j.colsurfb.2020.111164.

  478. Kumbham, S., Paul, M., Itoo, A., Ghosh, B., & Biswas, S. (2022). Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma. International Journal of Pharmaceutics, 614, 121479. https://doi.org/10.1016/j.ijpharm.2022.121479

    Article  CAS  PubMed  Google Scholar 

  479. Wang, X., Liu, Y., Wang, S. J., Shi, D. H., Zhou, X. G., Wang, C. Y., et al. (2015). CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Applied Surface Science, 332, 308–317. https://doi.org/10.1016/j.apsusc.2015.01.204

    Article  CAS  Google Scholar 

  480. Zhang, S. P., Guo, N., Wan, G. Y., Zhang, T., Li, C. Y., Wang, Y. F., et al. (2019). pH and redox dual-responsive nanoparticles based on disulfide-containing poly(beta-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. Journal of Nanobiotechnology, 17(1). https://doi.org/10.1186/s12951-019-0540-9

  481. Helmy, S. A., El-Mofty, S., El Gayar, A. M., El-Sherbiny, I. M., & El-Far, Y. M. (2022). Novel doxorubicin/folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: In-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomedicine & Pharmacotherapy, 145. https://doi.org/10.1016/j.biopha.2021.112376

  482. Huang, I. P., Sun, S. P., Cheng, S. H., Lee, C. H., Wu, C. Y., Yang, C. S., et al. (2011). Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Molecular Cancer Therapeutics, 10(5), 761–769. https://doi.org/10.1158/1535-7163.Mct-10-0884

    Article  CAS  PubMed  Google Scholar 

  483. Mi, F. L., Wang, L. F., Chu, P. Y., Peng, S. L., Feng, C. L., Lai, Y. J., et al. (2018). Active tumor-targeted co-delivery of epigallocatechin gallate and doxorubicin in nanoparticles for combination gastric cancer therapy. Acs Biomaterials Science & Engineering, 4(8), 2847–2859. https://doi.org/10.1021/acsbiomaterials.8b00242

    Article  CAS  Google Scholar 

  484. Wan, G. Y., Liu, Y., Shi, S. R., Chen, B. W., Wang, Y., Wang, H. M., et al. (2016). Hematoporphyrin and doxorubicin co-loaded nanomicelles for the reversal of drug resistance in human breast cancer cells by combining sonodynamic therapy and chemotherapy. Rsc Advances, 6(102), 100361–100372. https://doi.org/10.1039/c6ra22724d

    Article  CAS  Google Scholar 

  485. Dong, X. L., Sun, Y., Li, Y. Y., Ma, X. Y., Zhang, S. Q., Yuan, Y., et al. (2021). Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance. Small, 17(18). https://doi.org/10.1002/smll.202007672

  486. Khdair, A., Chen, D., Patil, Y., Ma, L. N., Dou, Q. P., Shekhar, M. P. V., et al. (2010). Nano particle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release, 141(2), 137–144. https://doi.org/10.1016/j.jconrel.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  487. Fu, J. K., Li, T., Yang, Y. Z., Jiang, L. P., Wang, W. H., Fu, L. J., et al. (2021). Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials, 268. https://doi.org/10.1016/j.biomaterials.2020.120537

  488. Li, S. Y., Sun, R., Wang, H. X., Shen, S., Liu, Y., Du, X. J., et al. (2015). Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. Journal of Controlled Release, 205, 7–14. https://doi.org/10.1016/j.jconrel.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  489. Wang, Y., Saad, M., Pakunlu, R. I., Khandare, J. J., Garbuzenko, O. B., Garbuzenko, O. B., et al. (2008). Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Clinical Cancer Research, 14(11), 3607–3616. https://doi.org/10.1158/1078-0432.Ccr-07-2020

    Article  CAS  PubMed  Google Scholar 

  490. Lv, X. M., Guo, Q. S., & Xu, L. M. (2020). Study on the chemotherapeutic effect and mechanism of doxorubicin hydrochloride on drug-resistant gastric cancer cell lines using metal-organic framework fluorescent nanoparticles as carriers. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/6681749

  491. Kumar, B. N. P., Puvvada, N., Rajput, S., Sarkar, S., Mahto, M. K., Yallapu, M. M., et al. (2018). Targeting of EGFR, VEGFR2, and Akt by engineered dual drug encapsulated mesoporous silica-gold nanoclusters sensitizes tamoxifen-resistant breast cancer. Molecular Pharmaceutics, 15(7), 2698–2713. https://doi.org/10.1021/acs.molpharmaceut.8b00218

    Article  CAS  PubMed  Google Scholar 

  492. Wang, C., Liu, B., Xu, X. L., Zhuang, B., Li, H. X., Yin, J. Q., et al. (2016). Toward targeted therapy in chemotherapy-resistant pancreatic cancer with a smart triptolide nanomedicine. Oncotarget, 7(7), 8360–8372. https://doi.org/10.18632/oncotarget.7073

    Article  PubMed  PubMed Central  Google Scholar 

  493. Ganthala, P. D., Alavala, S., Chella, N., Andugulapati, S. B., Bathini, N. B., & Sistla, R. (2022). Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids and Surfaces B-Biointerfaces, 211. https://doi.org/10.1016/j.colsurfb.2021.112305.

  494. Zhang, L. L., Zhu, H. Y., Gu, Y., Wang, X. H., & Wu, P. P. (2019). Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. Journal of Nanoparticle Research, 21(4). https://doi.org/10.1007/s11051-018-4430-0

  495. He, L. Z., Lai, H. Q., & Chen, T. F. (2015). Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials, 51, 30–42. https://doi.org/10.1016/j.biomaterials.2015.01.063

    Article  CAS  PubMed  Google Scholar 

  496. Huang, Y. Y., Luo, Y., Zheng, W. J., & Chen, T. F. (2014). Rational design of cancer-targeted BSA protein nanoparticles as radiosensitizer to overcome cancer radioresistance. ACS Applied Materials & Interfaces, 6(21), 19217–19228. https://doi.org/10.1021/am505246w

    Article  CAS  Google Scholar 

  497. Lang, L. W., Lam, T., Chen, A., Jensen, C., Duncan, L., Kong, F. C., et al. (2020). Circumventing AKT-associated radioresistance in oral cancer by novel nanoparticle-encapsulated capivasertib. Cells, 9(3). https://doi.org/10.3390/cells9030533

  498. Wang, N., Feng, Y. X., Zeng, L. L., Zhao, Z. N., & Chen, T. F. (2015). Functionalized multiwalled carbon nanotubes as carriers of ruthenium complexes to antagonize cancer multidrug resistance and radioresistance. ACS Applied Materials & Interfaces, 7(27), 14933–14945. https://doi.org/10.1021/acsami.5b03739

    Article  CAS  Google Scholar 

  499. Rajamani, S., Radhakrishnan, A., Sengodan, T., & Thangavelu, S. (2018). Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Development and Industrial Pharmacy, 44(11), 1752–1761. https://doi.org/10.1080/03639045.2018.1496445

    Article  CAS  PubMed  Google Scholar 

  500. Guo, Y., Liu, S., Luo, F., Tang, D., Yang, T., Yang, X., et al. (2022). A nanosized codelivery system based on intracellular stimuli-triggered dual-drug release for multilevel chemotherapy amplification in drug-resistant breast cancer. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020422

  501. Zhang, J., Liang, L. J., Li, Z. Y., Shen, Y. T., Guan, X., Yue, J., et al. (2020). Multi-functionalized Nano-conjugate for combating multidrug resistant breast cancer via starvation-assisted chemotherapy.Materials Science & Engineering C-Materials for Biological Applications, 116. https://doi.org/10.1016/j.msec.2020.111127

  502. Kojima, K., Takahashi, S., Saito, S., Endo, Y., Nittami, T., Nozaki, T., et al. (2018). Combined effects of Fe3O4 nanoparticles and chemotherapeutic agents on prostate cancer cells in vitro. Applied Sciences-Basel, 8(1). https://doi.org/10.3390/app8010134

  503. Wang, Q., Zhang, X. Y., Sun, Y., Wang, L. T., Ding, L., Zhu, W. H., et al. (2019). Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer. Biomaterials, 212, 73–86. https://doi.org/10.1016/j.biomaterials.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  504. Chang, P. Y., Peng, S. F., Lee, C. Y., Lu, C. C., Tsai, S. C., Shieh, T. M., et al. (2013). Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. International Journal of Oncology, 43(4), 1141–1150. https://doi.org/10.3892/ijo.2013.2050

    Article  CAS  PubMed  Google Scholar 

  505. Kotmakci, M., Cetintas, V. B., & Kantarci, A. G. (2017). Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells. International Journal of Pharmaceutics, 525(1), 101–111. https://doi.org/10.1016/j.ijpharm.2017.04.034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.F., and A.B.; Methodology and Software, S.F. and A.B.; Writing—Original Draft, S.F., S.Z.M., F.F., T.F., O.H., A.I., and A.B.; Writing—Review and Editing, S.F., S.Z.M., K.W., and A.B.; Visualization, S.F.; Supervision, S.F. and A.B.; Project administration, A.B.

Corresponding author

Correspondence to Anupam Bishayee.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sajad Fakhri and Seyed Zachariah Moradi contributed equally to this work and are joint first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, S., Moradi, S.Z., Faraji, F. et al. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 42, 959–1020 (2023). https://doi.org/10.1007/s10555-023-10119-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10119-w

Keywords

Navigation