Skip to main content

Advertisement

Log in

Oncogenic super-enhancers in cancer: mechanisms and therapeutic targets

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Activation of oncogenes to sustain proliferative signaling and initiate metastasis are important hallmarks of cancer. Oncogenes are amplified or overexpressed in cancer cells and overexpression is often controlled at the level of transcription. Gene expression is tightly controlled by many cis-regulatory elements and trans-acting factors. Large clusters of enhancers known as “super-enhancers” drive robust expression of cell-fate determining transcription factors in cell identity. Cancer cells can take advantage of super-enhancers and become transcriptionally addicted to them leading to tumorigenesis and metastasis. Additionally, the cis-regulatory landscape of cancer includes aberrant super-enhancers that are not present in normal cells. The landscape of super-enhancers in cancer is characterized by high levels of histone H3K27 acetylation and bromodomain-containing protein 4 (BRD4), and Mediator complex. These chromatin features facilitate the identification of cancer type-specific and cell-type-specific super-enhancers that control the expression of important oncogenes to stimulate their growth. Disruption of super-enhancers via inhibiting BRD4 or other epigenetic proteins is a potential therapeutic option. Here, we will describe the discovery of super-enhancers and their unique characteristics compared to typical enhancers. Then, we will highlight how super-enhancer-associated genes contribute to cancer progression in different solid tumor types. Lastly, we will cover therapeutic targets and their epigenetic modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B Lu C Zou M Yang Y He J He C Zhang W Zhao (2021) Pharmacological inhibition of core regulatory circuitry liquid–liquid phase separation suppresses metastasis and chemoresistance in osteosarcoma Advanced Science 8 (20) https://doi.org/10.1002/advs.202101895

  2. Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., & Ren, B. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459(7243), 108–112. https://doi.org/10.1038/nature07829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., & Young, R. A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 153(2), 307–319. https://doi.org/10.1016/j.cell.2013.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hnisz, D., Schuijers, J., Lin, C. Y., Weintraub, A. S., Abraham, B. J., Lee, T. I., & Young, R. A. (2015). Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Molecular Cell, 58(2), 362–370. https://doi.org/10.1016/j.molcel.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. RW Zhou J Xu TC Martin AL Zachem J He S Ozturk RE Parsons (2022) A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma Nature Communications 13 (1) https://doi.org/10.1038/s41467-022-33377-8

  6. M Wiese FH Hamdan K Kubiak C Diederichs GH Gielen G Nussbaumer CM Kramm (2020) Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells Cell Death and Disease 11 (8) https://doi.org/10.1038/s41419-020-02800-7

  7. JE Lee YK Park S Park Y Jang N Waring A Dey K Ge (2017) Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis Nature Communications 8 (1) https://doi.org/10.1038/s41467-017-02403-5

  8. Alver, B. H., Kim, K. H., Lu, P., Wang, X., Manchester, H. E., Wang, W., … Roberts, C. W. M. (2017). The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nature Communications, 8 https://doi.org/10.1038/ncomms14648

  9. BR Sabari Dall’Agnese, A., Boija, A., Klein, I. A., Coffey, E. L., Shrinivas, K., … Young, R. A. (2018) Coactivator condensation at super-enhancers links phase separation and gene control Science 361 (6400) https://doi.org/10.1126/science.aar3958

  10. Mediator condensates localize signaling factors to key cell identity genes (n.d.)

  11. Wang, W., Qiao, S., Li, G., Cheng, J., Yang, C., Zhong, C., & Sui, G. (2022). A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated enhancer clusters. Nucleic acids research, 50(9), 4917–4937. https://doi.org/10.1093/nar/gkac233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boija, A., Klein, I. A., Sabari, B. R., & Dall’Agnese, A., Coffey, E. L., Zamudio, A. v., … Young, R. A. (2018). Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175(7), 1842-1855.e16. https://doi.org/10.1016/j.cell.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  13. Y Gong C Lazaris T Sakellaropoulos A Lozano P Kambadur P Ntziachristos A Tsirigos (2018) Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries Nature Communications 9 (1) https://doi.org/10.1038/s41467-018-03017-1

  14. Kloetgen, A., Thandapani, P., Ntziachristos, P., Ghebrechristos, Y., Nomikou, S., Lazaris, C., & Tsirigos, A. (2020). Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nature Genetics, 52(4), 388–400. https://doi.org/10.1038/s41588-020-0602-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C Fang Z Wang C Han SL Safgren KA Helmin ER Adelman C Zang (2020) Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation Genome Biology 21 (1) https://doi.org/10.1186/s13059-020-02152-7

  16. Merkenschlager, M., & Nora, E. P. (2016). CTCF and cohesin in genome folding and transcriptional gene regulation. Annual Review of Genomics and Human Genetics. Annual Reviews Inc. https://doi.org/10.1146/annurev-genom-083115-022339

  17. T Zhang X Song Z Zhang Q Mao W Xia L Xu G Dong (2020) Aberrant super-enhancer landscape reveals core transcriptional regulatory circuitry in lung adenocarcinoma Oncogenesis 9 (10) https://doi.org/10.1038/s41389-020-00277-9

  18. Tsang, F. H. C., Law, C. T., Tang, T. C. C., Cheng, C. L. H., Chin, D. W. C., Tam, W. S. V., & Wong, C. M. (2019). Aberrant super-enhancer landscape in human hepatocellular carcinoma. Hepatology, 69(6), 2502–2517. https://doi.org/10.1002/hep.30544

    Article  CAS  PubMed  Google Scholar 

  19. Roe, J. S., Hwang, C., & il, Somerville, T. D. D., Milazzo, J. P., Lee, E. J., da Silva, B., …Vakoc, C. R. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170(5), 875-888.e20. https://doi.org/10.1016/j.cell.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H-R Kim J Yim H-B Yoo SE Lee S Oh S Jung J-S Roe (2021) EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer NAR Cancer 3 (2) https://doi.org/10.1093/narcan/zcab023

  21. Wu, F., Xu, L., Tu, Y., Cheung, O. K., Szeto, L. L., Mok, M. T., & To, K. F. (2022). Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Letters, 525, 115–130. https://doi.org/10.1016/j.canlet.2021.10.039

    Article  CAS  PubMed  Google Scholar 

  22. Wen, S., He, Y., Wang, L., Zhang, J., Quan, C., Niu, Y., & Huang, H. (2020). Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer. Oncogene, 39(42), 6556–6571. https://doi.org/10.1038/s41388-020-01456-z

    Article  CAS  PubMed  Google Scholar 

  23. Yu, D., Yang, X., Lin, J., Cao, Z., Lu, C., Yang, Z., …Cai, W. (2021). Super-enhancer induced IL-20RA promotes proliferation/metastasis and immune evasion in colorectal cancer. Frontiers in Oncology, 11 https://doi.org/10.3389/fonc.2021.724655

  24. Jiang, X., Qin, N., Hua, T., Wei, X., Li, Y., Chen, C., & Ma, H. (2022). Functional characterization and clinical significance of super-enhancers in lung adenocarcinoma. Molecular Carcinogenesis, 61(8), 776–786. https://doi.org/10.1002/mc.23419

    Article  CAS  PubMed  Google Scholar 

  25. Tatsumi, G., Kawahara, M., Yamamoto, R., Hishizawa, M., Kito, K., Suzuki, T., & Andoh, A. (2020). LSD1-mediated repression of GFI1 super-enhancer plays an essential role in erythroleukemia. Leukemia, 34(3), 746–758. https://doi.org/10.1038/s41375-019-0614-6

    Article  PubMed  Google Scholar 

  26. Ying, Y., Wang, Y., Huang, X., Sun, Y., Zhang, J., Li, M., Shu, X., & sheng. (2020). Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1. Oncogene, 39(5), 1004–1017. https://doi.org/10.1038/s41388-019-1013-1

    Article  CAS  PubMed  Google Scholar 

  27. H Huang J Hu A Maryam Q Huang Y Zhang S Ramakrishnan YR Chin (2021) Defining super-enhancer landscape in triple-negative breast cancer by multiomic profiling Nature Communications 12 (1) https://doi.org/10.1038/s41467-021-22445-0

  28. Patel, S. A., Rodrigues, P., Wesolowski, L., & Vanharanta, S. (2021, January 5). Genomic control of metastasis. British Journal of Cancer. Springer Nature. https://doi.org/10.1038/s41416-020-01127-6

  29. McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O., & Feinberg, A. P. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 49(3), 367–376. https://doi.org/10.1038/ng.3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teng, S., Li, Y. E., Yang, M., Qi, R., Huang, Y., Wang, Q., & Wang, D. (2020). Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer. Cell Research, 30(1), 34–49. https://doi.org/10.1038/s41422-019-0259-z

    Article  CAS  PubMed  Google Scholar 

  31. Andricovich, J., Perkail, S., Kai, Y., Casasanta, N., Peng, W., & Tzatsos, A. (2018). Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell, 33(3), 512-526.e8. https://doi.org/10.1016/j.ccell.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J Dong J Li Y Li Z Ma Y Yu CY Wang (2021) Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma Nature Communications 12 (1) https://doi.org/10.1038/s41467-021-24137-1

  33. Zhang, M., Hoyle, R. G., Ma, Z., Sun, B., Cai, W., Cai, H., & Li, J. (2021). FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Molecular Therapy, 29(8), 2583–2600. https://doi.org/10.1016/j.ymthe.2021.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, C., Wei, S., Sun, W. P., Teng, K., Dai, M. M., Wang, F. W., & Xie, D. (2020). Super-enhancer-driven AJUBA is activated by TCF4 and involved in epithelial-mesenchymal transition in the progression of Hepatocellular Carcinoma. Theranostics, 10(20), 9066–9082. https://doi.org/10.7150/thno.45349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, E. J., Liu, P., Zhang, S., Donahue, K., Wang, Y., Schehr, J. L., & Xu, W. (2021). BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Research, 49(21), 12211–12233. https://doi.org/10.1093/nar/gkab1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., & Bradner, J. E. (2010). Selective inhibition of BET bromodomains. Nature, 468(7327), 1067–1073. https://doi.org/10.1038/nature09504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, J., & Vakoc, C. R. (2014, June 5). The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular Cell. Cell Press. https://doi.org/10.1016/j.molcel.2014.05.016

  38. Nakamura, Y., Hattori, N., Iida, N., Yamashita, S., Mori, A., Kimura, K., & Ushijima, T. (2017). Targeting of super-enhancers and mutant BRAF can suppress growth of BRAF-mutant colon cancer cells via repression of MAPK signaling pathway. Cancer Letters, 402, 100–109. https://doi.org/10.1016/j.canlet.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  39. Gryder, B. E., Yohe, M. E., Chou, H. C., Zhang, X., Marques, J., Wachtel, M., & Khan, J. (2017). PAX3-FOXO1 establishes myogenic super enhancers and confers BET bromodomain vulnerability. Cancer Discovery, 7(8), 884–899. https://doi.org/10.1158/2159-8290.CD-16-1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. BE Gryder L Wu GM Woldemichael S Pomella TR Quinn PMC Park J Khan (2019) Chemical genomics reveals histone deacetylases are required for core regulatory transcription Nature Communications 10 (1) https://doi.org/10.1038/s41467-019-11046-7

  41. Caslini, C., Hong, S., Ban, Y. J., Chen, X. S., & Ince, T. A. (2019). HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene, 38(39), 6599–6614. https://doi.org/10.1038/s41388-019-0897-0

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen, T. T. T., Zhang, Y., Shang, E., Shu, C., Torrini, C., Zhao, J., … Siegelin, M. D. (2020). HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. Journal of Clinical Investigation, 130(7), 3699–3716. https://doi.org/10.1172/JCI129049

  43. C Zhang X Lu J Huang H He L Chen Y Liu D Xu (2021) Epigenome screening highlights that JMJD6 confers an epigenetic vulnerability and mediates sunitinib sensitivity in renal cell carcinoma Clinical and Translational Medicine 11 (2) https://doi.org/10.1002/ctm2.328

  44. Xiao, L., Parolia, A., Qiao, Y., Bawa, P., Eyunni, S., Mannan, R., & Chinnaiyan, A. M. (2022). Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature, 601(7893), 434–439. https://doi.org/10.1038/s41586-021-04246-z

    Article  CAS  PubMed  Google Scholar 

  45. L Li N Wang M Zhu Y Xiong F Wang G Guo Y Gu (2021) Aberrant super-enhancer-driven oncogene ENC1 promotes the radio-resistance of breast carcinoma Cell Death and Disease 12 (8) https://doi.org/10.1038/s41419-021-04060-5

  46. B Ye D Fan W Xiong M Li J Yuan Q Jiang Y Qiao (2021) Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis Nature Communications 12 (1) https://doi.org/10.1038/s41467-021-24813-2

  47. Zhu, X., Zhang, T., Zhang, Y., Chen, H., Shen, J., Jin, X., … Zhou, G. (2020). A super-enhancer controls TGF- β signaling in pancreatic cancer through downregulation of TGFBR2. Cellular Signalling, 66 https://doi.org/10.1016/j.cellsig.2019.109470

  48. Sun, Y., Han, J., Wang, Z., Li, X., Sun, Y., & Hu, Z. (2021, January 26). Safety and efficacy of bromodomain and extra-terminal inhibitors for the treatment of hematological malignancies and solid tumors: A systematic study of clinical trials. Frontiers in Pharmacology. Frontiers Media S.A. https://doi.org/10.3389/fphar.2020.621093

  49. Jiang, Y. Y., Lin, D. C., Mayakonda, A., Hazawa, M., Ding, L. W., Chien, W. W., & Koeffler, H. P. (2017). Targeting super-enhancer-Associated oncogenes in oesophageal squamous cell carcinoma. Gut, 66(8), 1358–1368. https://doi.org/10.1136/gutjnl-2016-311818

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, J., Liu, W., Zou, C., Zhao, Z., Lai, Y., Shi, Z., & Shen, J. (2020). Targeting super-enhancer–associated oncogenes in osteosarcoma with THZ2, a Covalent CDK7 Inhibitor. Clinical Cancer Research, 26(11), 2681–2692. https://doi.org/10.1158/1078-0432.CCR-19-1418

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Martinez, L., Zhang, Y., Nakata, Y., Chan, H. L., & Morey, L. (2021, December 1). Epigenetic mechanisms in breast cancer therapy and resistance. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-021-22024-3

Download references

Acknowledgements

The authors would like to thank Elise Wright for her help in illustrating the figures.

Funding

This work was funded by the National Institutes of Health R01 CA236356, R01 CA268183, R01 CA281024 to W.X. and the National Cancer Institute NRSA award T32 CA009135 to M.B.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and W.X. conceived the idea for this manuscript. M.B. performed the literature search and drafted the manuscript. W.X. critically revised the manuscript.

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests. We apologize to the authors whose work was not cited due to space limitations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacabac, M., Xu, W. Oncogenic super-enhancers in cancer: mechanisms and therapeutic targets. Cancer Metastasis Rev 42, 471–480 (2023). https://doi.org/10.1007/s10555-023-10103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10103-4

Keywords

Navigation