Skip to main content

Advertisement

Log in

Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., & Aguirre-Ghiso, J. A. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol., 19(2), 120–132. https://doi.org/10.1038/ncb3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Angelis, M. L., Francescangeli, F., La Torre, F., & Zeuner, A. (2019). Stem cell plasticity and dormancy in the development of cancer therapy resistance. Front Oncol, 9, 626. https://doi.org/10.3389/fonc.2019.00626

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hen, O., & Barkan, D. (2020). Dormant disseminated tumor cells and cancer stem/progenitor-like cells: similarities and opportunities. Semin. Cancer Biol., 60, 157–165. https://doi.org/10.1016/j.semcancer.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  4. De Angelis, M. L., Francescangeli, F., & Zeuner, A. (2019). Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers., 11(10), 1569. https://doi.org/10.3390/cancers11101569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, C., Tian, G., Dajac, M., Doty, A., Wang, S., Lee, J. H., et al. (2022). Slow-cycling cells in glioblastoma: a specific population in the cellular mosaic of cancer stem cells. Cancers, 14(5), 1–18. https://doi.org/10.3390/cancers14051126

    Article  CAS  Google Scholar 

  6. Nik Nabil, W. N., Xi, Z., Song, Z., Jin, L., Zhang, X. D., Zhou, H., et al. (2021). Towards a framework for better understanding of quiescent cancer cells. Cells., 10(3), 562. https://doi.org/10.3390/cells10030562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Basu, S., Dong, Y., Kumar, R., Jeter, C., & Tang, D. G. (2022). Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin. Cancer Biol., 78, 90–103. https://doi.org/10.1016/j.semcancer.2021.04.021

    Article  CAS  PubMed  Google Scholar 

  8. Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De Maria, R. (2020). Tuning cancer fate: tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Front. Immunol., 11(October). https://doi.org/10.3389/fimmu.2020.02166

  9. Tamamouna, V., Pavlou, E., Neophytou, C. M., Papageorgis, P., & Costeas, P. (2022). Regulation of metastatic tumor dormancy and emerging opportunities for therapeutic intervention. Int. J. Mol. Sci., 23(22), 13931. https://doi.org/10.3390/ijms232213931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vera-Ramirez, L. (2020). Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. In Seminars in Cancer Biology (Vol. 60, pp. 28–40). Elsevier.

    Google Scholar 

  11. Yang, X., Liang, X., Zheng, M., & Tang, Y. (2018). Cellular phenotype plasticity in cancer dormancy and metastasis. Front Oncol, 8(NOV), 1–12. https://doi.org/10.3389/fonc.2018.00505

    Article  Google Scholar 

  12. Damen, M. P. F., van Rheenen, J., & Scheele, C. L. G. J. (2021). Targeting dormant tumor cells to prevent cancer recurrence. FEBS Lett., 288(21), 6286–6303. https://doi.org/10.1111/febs.15626

    Article  CAS  Google Scholar 

  13. Holmgren, L., O’reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med., 1(2), 149–153. https://doi.org/10.1038/nm0295-149

    Article  CAS  PubMed  Google Scholar 

  14. Racila, E., Scheuermann, R. H., Picker, L. J., Yefenof, E., Tucker, T., Chang, W., Marches, R., Street, N. E., & E. S. V. and J. W. hr. (1995). Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J. Exp. Med., 181(April), 1539–1550. https://doi.org/10.1084/jem.181.4.1539

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, N., Wu, X., Yang, B., Yang, X., Zhang, D., & Qing, G. (2014). Stem cell characteristics of dormant cells and cisplatin-induced effects on the stemness of epithelial ovarian cancer cells. Mol. Med. Rep., 10(5), 2495–2504. https://doi.org/10.3892/mmr.2014.2483

    Article  CAS  PubMed  Google Scholar 

  16. Carcereri de Prati, A., Butturini, E., Rigo, A., Oppici, E., Rossin, M., Boriero, D., & Mariotto, S. (2017). Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia. J. Cell. Biochem., 118(10), 3237–3248. https://doi.org/10.1002/jcb.25972

    Article  CAS  PubMed  Google Scholar 

  17. Hosseini, H., Obradovic, M. M. S., Hoffmann, M., Harper, K. L., Sosa, M. S., Werner-Klein, M., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558. https://doi.org/10.1038/nature20785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pommier, A., Anaparthy, N., Memos, N., Kelley, Z. L., Gouronnec, A., Yan, R., et al. (2018). Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 360(6394), eaao4908.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., Cho, J.-W., et al. (2022). Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell, 185(10), 1694–1708.e19. https://doi.org/10.1016/j.cell.2022.03.033

    Article  CAS  PubMed  Google Scholar 

  20. Peitzsch, C., Tyutyunnykova, A., Pantel, K., & Dubrovska, A. (2017). Cancer stem cells: the root of tumor recurrence and metastases. Semin. Cancer Biol., 44, 10–24. https://doi.org/10.1016/j.semcancer.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  21. Xie, X. P., Laks, D. R., Sun, D., Ganbold, M., Wang, Z., Pedraza, A. M., et al. (2022). Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev. Cell, 57(1), 32–46.e8. https://doi.org/10.1016/j.devcel.2021.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leonce, C., Saintigny, P., & Ortiz-Cuaran, S. (2022). Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol. Cancer, 20(1), 11–29. https://doi.org/10.1158/1541-7786.MCR-21-0038

    Article  CAS  Google Scholar 

  23. Dhanyamraju, P. K., Schell, T. D., Amin, S., & Robertson, G. P. (2022). Drug-tolerant persister cells in cancer therapy resistance. Cancer Res, 82(14), 2503–2514. https://doi.org/10.1158/0008-5472.CAN-21-3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delahaye, C., Figarol, S., Pradines, A., Favre, G., Mazieres, J., & Calvayrac, O. (2022). Early steps of resistance to targeted therapies in non-small-cell lung cancer. Cancers. https://doi.org/10.3390/cancers14112613

  25. Santos-de-Frutos, K., & Djouder, N. (2021). When dormancy fuels tumour relapse. Commun. Biol., 4(1), 747. https://doi.org/10.1038/s42003-021-02257-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morales-Valencia, J., & David, G. (2022). The origins of cancer cell dormancy. Curr. Opin. Genet. Dev., 74, 101914. https://doi.org/10.1016/j.gde.2022.101914

    Article  CAS  PubMed  Google Scholar 

  27. Rehman, S. K., Haynes, J., Collignon, E., Brown, K. R., Wang, Y., Nixon, A. M. L., & Lo, E. B. L. (2021). Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell, 184(1), 226–242.

    Article  CAS  PubMed  Google Scholar 

  28. Ramirez, M., Rajaram, S., Steininger, R. J., Osipchuk, D., Roth, M. A., Morinishi, L. S., & Altschuler, S. J. (2016). Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Comm., 7, 1–8. https://doi.org/10.1038/ncomms10690

    Article  CAS  Google Scholar 

  29. Oren, Y., Tsabar, M., Cuoco, M. S., Amir-Zilberstein, L., Cabanos, H. F., Hütter, J. C., et al. (2021). Cycling cancer persister cells arise from lineages with distinct programs. Nature, 596(7873), 576–582. https://doi.org/10.1038/s41586-021-03796-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Russo, M., Pompei, S., Sogari, A., Corigliano, M., Crisafulli, G., Puliafito, A., & Cosentino Lagomarsino, M. (2022). A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Gen., 54(7), 976–984. https://doi.org/10.1038/s41588-022-01105-z

    Article  CAS  Google Scholar 

  31. Saleh, T., Tyutyunyk-Massey, L., & Gewirtz, D. A. (2019). Tumor cell escape from therapy-induced senescence as a model of disease recurrence after dormancy. Cancer Res., 79(6), 1044–1046. https://doi.org/10.1158/0008-5472.CAN-18-3437

    Article  CAS  PubMed  Google Scholar 

  32. Saleh, T., Bloukh, S., Carpenter, V. J., Alwohoush, E., Bakeer, J., Darwish, S., & Gewirtz, D. A. (2020). Therapy-induced senescence: an “old” friend becomes the enemy. Cancers., 12(4), 822. https://doi.org/10.3390/cancers12040822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fitsiou, E., Soto-Gamez, A., & Demaria, M. (2022). Biological functions of therapy-induced senescence in cancer. Sem in Cancer Bio, 81, 5–13. https://doi.org/10.1016/j.semcancer.2021.03.021

    Article  CAS  Google Scholar 

  34. Vallette, F. M., Olivier, C., Lézot, F., Oliver, L., Cochonneau, D., Lalier, L., et al. (2019). Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Bioc. Pharm., 162(September), 169–176. https://doi.org/10.1016/j.bcp.2018.11.004

    Article  CAS  Google Scholar 

  35. Sauer, S., Reed, D. R., Ihnat, M., Hurst, R. E., Warshawsky, D., & Barkan, D. (2021). Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front in Onc., 11, 659963.

    Article  Google Scholar 

  36. Risson, E., Nobre, A. R., Maguer-Satta, V., & Aguirre-Ghiso, J. A. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer, 1(7), 672–680. https://doi.org/10.1038/s43018-020-0088-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, X., Sun, Z., Peng, G., Xiao, Y., Guo, J., Wu, B., et al. (2022). Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics, 12(2), 620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lauber, K., & Herrmann, M. (2015). Tumor biology: with a little help from my dying friends. Curr. Bio., 25(5), R198–R201. https://doi.org/10.1016/j.cub.2015.01.040

    Article  CAS  Google Scholar 

  39. Sulciner, M. L., Serhan, C. N., Gilligan, M. M., Mudge, D. K., Chang, J., Gartung, A., et al. (2018). Resolvins suppress tumor growth and enhance cancer therapy. J of Exp. Med, 215(1), 115–140. https://doi.org/10.1084/jem.20170681

    Article  CAS  Google Scholar 

  40. Haak, V. M., Huang, S., & Panigrahy, D. (2021). Debris-stimulated tumor growth: a Pandora’s box? Cancer Metastasis Rev., 40(3), 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & O. L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Urol. Oncol.: Semin. Orig., 63(1), 1684–1695.

    CAS  Google Scholar 

  42. Aguirre-Ghiso, J. A., Ossowski, L., & Rosenbaum, S. K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathwCancer Res.ay activation during primary and metastatic growth., 64(20), 7336–7345.

  43. Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Bio, 20(2), 211–221. https://doi.org/10.1038/s41556-017-0021-z

    Article  CAS  Google Scholar 

  44. Aguirre-Ghiso, J. A., & Sosa, M. S. (2018). Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annu. Rev. Cancer Biol., 2, 377–393.

    Article  Google Scholar 

  45. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. rev. Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sosa, M. S., Parikh, F., Maia, A. G., Estrada, Y., Bosch, A., Bragado, P., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Comm, 6, 1–14. https://doi.org/10.1038/ncomms7170

    Article  CAS  Google Scholar 

  47. Borgen, E., Rypdal, M. C., Sosa, M. S., Renolen, A., Schlichting, E., Lønning, P. E., et al. (2018). NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res, 20(1), 120. https://doi.org/10.1186/s13058-018-1049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ren, G., Esposito, M., & Kang, Y. (2015). Bone metastasis and the metastatic niche. J of Mol. Med, 93(11), 1203–1212. https://doi.org/10.1007/s00109-015-1329-4

    Article  CAS  Google Scholar 

  49. Celià-Terrassa, T., & Kang, Y. (2018). Metastatic niche functions and therapeutic opportunities. Nat. Cell Bio., 20(8), 868–877. https://doi.org/10.1038/s41556-018-0145-9

    Article  CAS  Google Scholar 

  50. Bartosh, T. J., Ullah, M., Zeitouni, S., Beaver, J., & Prockop, D. J. (2016). Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc. Natl. Acad. Sci. U.S.A, 113(42), E6447–E6456. https://doi.org/10.1073/pnas.1612290113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bliss, S. A., Sinha, G., Sandiford, O. A., Williams, L. M., Engelberth, D. J., Guiro, K., et al. (2016). Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res., 76(19), 5832–5844. https://doi.org/10.1158/0008-5472.CAN-16-1092

    Article  CAS  PubMed  Google Scholar 

  52. Lim, A. R., & Ghajar, C. M. (2022). Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Sem. in Cancer Bio, 78, 104–123. https://doi.org/10.1016/j.semcancer.2021.05.007

    Article  CAS  Google Scholar 

  53. Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., et al. (2021). Mesenchymal stem cell–secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res., 81(6), 1567–1582. https://doi.org/10.1158/0008-5472.CAN-20-2434

    Article  CAS  PubMed  Google Scholar 

  54. Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., & Aguirre-Ghiso, J. A. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Bio., 15(11), 1351–1361. https://doi.org/10.1038/ncb2861

    Article  CAS  Google Scholar 

  55. Nobre, A. R., Risson, E., Singh, D. K., Di Martino, J. S., Cheung, J. F., Wang, J., et al. (2021). Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nat. Cancer, 2(3), 327–339. https://doi.org/10.1038/s43018-021-00179-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu-Lee, L.-Y., Guoyu, Y., Lee, Y.-C., Lin, S.-C., Pan, J., Pan, T., Kai-Jie, Y., Liu, B., Creighton, C. J., Rodriguez-Canales, J., Villalobos, P. A., Wistuba, I. I., de Nadal, E., Posas, F., Gallick, G. E., & S.-H. L. (2018). Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII- p38MAPK-pS249/T252RB pathway. Cancer Res., 78(11), 2911–2924. https://doi.org/10.1158/0008-5472.CAN-17-1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., et al. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J of Exp Med, 208(13), 2641–2655. https://doi.org/10.1084/jem.20110840

    Article  CAS  Google Scholar 

  58. Sharma, S., Xing, F., Liu, Y., Wu, K., Said, N., Pochampally, R., et al. (2016). Secreted protein acidic and rich in cysteine (sparc) mediates metastatic dormancy of prostate cancer in bone. J of Biol Chem, 291(37), 19351–19363. https://doi.org/10.1074/jbc.M116.737379

    Article  CAS  Google Scholar 

  59. Ghiso, J. A. A. (2002). Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene, 610(January). https://doi.org/10.1038/sj/onc/1205342

  60. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K., & Ossowski, L. (2001). Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Bio of the Cell, 12(4), 863–879. https://doi.org/10.1091/mbc.12.4.863

    Article  CAS  Google Scholar 

  61. Shibue, T., & Weinberg, R. A. (2009). Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. U.S.A, 106(25), 10290–10295. https://doi.org/10.1073/pnas.0904227106

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ohta, Y., Fujii, M., Takahashi, S., Takano, A., Nanki, K., Matano, M., et al. (2022). Cell–matrix interface regulates dormancy in human colon cancer stem cells. Nature, 608(7924), 784–794. https://doi.org/10.1038/s41586-022-05043-y

    Article  CAS  PubMed  Google Scholar 

  63. Lee, L. H., Davis, L., Ylagan, L., Omilian, A. R., Attwood, K., Firat, C., et al. (2022). Identification of a subset of stage I colorectal cancer patients with high recurrence risk. J. Natl. Cancer Inst., 114(5), 732–739.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Touil, Y., Igoudjil, W., Corvaisier, M., Dessein, A. F., Vandomme, J., Monte, D., & Huet, G. (2014). Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin. Cancer Res., 20(4), 837–846. https://doi.org/10.1158/1078-0432.CCR-13-1854

    Article  CAS  PubMed  Google Scholar 

  65. Kurppa, K. J., Liu, Y., To C, Zhang, T., Fan, M., Vajdi, A., Knelson, E. H., Xie, Y., Lim, K., Cejas, P., & Portell, A. (2020). Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer cell, 37(1), 104–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Francescangeli, F., Contavalli, P., De Angelis, M. L., Careccia, S., Signore, M., Haas, T. L., & Zeuner, A. (2020). A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J. Exp. Clin. Cancer Res., 39(1), 2. https://doi.org/10.1186/s13046-019-1505-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cuccu, A., Francescangeli, F., De Angelis, M. L., Bruselles, A., Giuliani, A., & Zeuner, A. (2022). Analysis of dormancy-associated transcriptional networks reveals a shared quiescence signature in lung and colorectal cancer. Int. J. Mol. Sci., 23(17), 9869. https://doi.org/10.3390/ijms23179869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56. https://doi.org/10.1038/35065016

    Article  PubMed  Google Scholar 

  69. Gao, X. L., Zheng, M., Wang, H. F., Dai, L. L., Yu, X. H., Yang, X., & Tang, Y. L. (2019). NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway. BMC Cancer, 19(1), 1–12. https://doi.org/10.1186/s12885-019-5925-5

    Article  CAS  Google Scholar 

  70. Agarwal, P., Isringhausen, S., Li, H., Paterson, A. J., He, J., Gomariz, Á., et al. (2019). Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell, 24(5), 769–784.e6. https://doi.org/10.1016/j.stem.2019.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., et al. (2016). Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Bio., 18(5), 549–560. https://doi.org/10.1038/ncb3340

    Article  CAS  Google Scholar 

  72. Krall, J. A., Reinhardt, F., Mercury, O. A., Pattabiraman, D. R., Brooks, M. W., Dougan, M., et al. (2018). The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Trans Med., 10(436), 1–12. https://doi.org/10.1126/scitranslmed.aan3464

    Article  CAS  Google Scholar 

  73. Manjili, S. H., Isbell, M., Ghochaghi, N., Perkinson, T., & Manjili, M. H. (2022). Multifaceted functions of chronic inflammation in regulating tumor dormancy and relapse. Sem in Cancer Bio, 78(March), 17–22. https://doi.org/10.1016/j.semcancer.2021.03.023

    Article  CAS  Google Scholar 

  74. Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A. M., Yumoto, K., Berry, J. E., et al. (2017). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J of cellular biochem., 118(4), 891–902.

    Article  CAS  Google Scholar 

  75. Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS ONE, 10(6), 1–16. https://doi.org/10.1371/journal.pone.0130565

    Article  CAS  Google Scholar 

  76. El Touny, L. H., Vieira, A., Mendoza, A., Khanna, C., Hoenerhoff, M. J., & Green, J. E. (2014). Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J. Clin. Investig., 124(1), 156–168. https://doi.org/10.1172/JCI70259

    Article  CAS  PubMed  Google Scholar 

  77. Simpkins, F., Jang, K., Yoon, H., Hew, K. E., Kim, M., Azzam, D. J., & Slingerland, J. M. (2018). Dual Src and MEK inhibition decreases ovarian cancer growth and targets tumor initiating stem-like cells. Clin. Cancer Res., 24(19), 4874–4886. https://doi.org/10.1158/1078-0432.CCR-17-3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kesh, K., Gupta, V. K., Durden, B., Garrido, V., Mateo-Victoriano, B., Lavania, S. P., & Banerjee, S. (2020). Therapy resistance, cancer stem cells and ECM in cancer: the matrix reloaded. Cancers, 12(10), 1–17. https://doi.org/10.3390/cancers12103067

    Article  CAS  Google Scholar 

  79. Lorusso, G., Rüegg, C., & Kuonen, F. (2020). Targeting the extra-cellular matrix—tumor cell crosstalk for anti-cancer therapy: emerging alternatives to integrin inhibitors. Front. in Onc, 10(July), 1–17. https://doi.org/10.3389/fonc.2020.01231

    Article  Google Scholar 

  80. Harrison, D. A. (2012). The jak/stat pathway. Cold Spring Harb. Perspect. Biol., 4(3), a011205.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hu, M. T., Wang, J. H., Yu, Y., Liu, C., Li, B., Cheng, Q. B., & Jiang, X. Q. (2018). Tumor suppressor LKB1 inhibits the progression of gallbladder carcinoma and predicts the prognosis of patients with this malignancy. Int. J. Oncol., 53(3), 1215–1226. https://doi.org/10.3892/ijo.2018.4466

    Article  CAS  PubMed  Google Scholar 

  82. Teng, Y., Wang, X., Wang, Y., & Ma, D. (2010). Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 392(3), 373–379. https://doi.org/10.1016/j.bbrc.2010.01.028

    Article  CAS  PubMed  Google Scholar 

  83. Matsuoka, K., Bakiri, L., Wolff, L. I., Linder, M., Mikels-Vigdal, A., Patiño-García, A., et al. (2020). Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res., 30(10), 885–901. https://doi.org/10.1038/s41422-020-0370-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah, D., Wyatt, D., Baker, A. T., Simms, P., Peiffer, D. S., Fernandez, M., et al. (2018). Inhibition of her2 increases jagged1-dependent breast cancer stem cells: role for membrane jagged1. Cli. Cancer Res., 24(18), 4566–4578. https://doi.org/10.1158/1078-0432.CCR-17-1952

    Article  CAS  Google Scholar 

  85. Indraccolo, S., Minuzzo, S., Masiero, M., Pusceddu, I., Persano, L., Moserle, L., et al. (2009). Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res., 69(4), 1314–1323. https://doi.org/10.1158/0008-5472.CAN-08-2791

    Article  CAS  PubMed  Google Scholar 

  86. Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., et al. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135. https://doi.org/10.1038/nature15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714. https://doi.org/10.1016/j.ccr.2011.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dai, R., Liu, M., Xiang, X., Xi, Z., & Xu, H. (2022). Osteoblasts and osteoclasts: an important switch of tumour cell dormancy during bone metastasis. J. Exp. Clin. Cancer Res., 41(1), 316. https://doi.org/10.1186/s13046-022-02520-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227. https://doi.org/10.1126/science.aao4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xue, R., Zhang, Q., Cao, Q., Kong, R., Xiang, X., Liu, H., et al. (2022). Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature, 612(7938), 141–147. https://doi.org/10.1038/s41586-022-05400-x

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, C., Li, D., Yu, R., Li, C., Song, Y., Chen, X., & Qu, X. (2021). Immune landscape of gastric carcinoma tumor microenvironment identifies a peritoneal relapse relevant immune signature. Front. Immunol., 12, 651033. https://doi.org/10.3389/fimmu.2021.651033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ombrato, L., & Montagner, M. (2020). Technical advancements for studying immune regulation of disseminated dormant cancer cells. Front Oncol, 10, 594514. https://doi.org/10.3389/fonc.2020.594514

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen, K., Zhang, C., Ling, S., Wei, R., Wang, J., & Xu, X. (2021). The metabolic flexibility of quiescent CSC: implications for chemotherapy resistance. Cell Death Dis., 12(9), 835. https://doi.org/10.1038/s41419-021-04116-6

    Article  PubMed  PubMed Central  Google Scholar 

  94. Heft Neal, M. E., Brenner, J. C., Prince, M. E. P., & Chinn, S. B. (2022). Advancement in cancer stem cell biology and precision medicine—review article head and neck cancer stem cell plasticity and the tumor microenvironment. Front. Cell Dev. Biol., 9. https://doi.org/10.3389/fcell.2021.660210

  95. Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nat. Rev. Cancer, 20(7), 398–411. https://doi.org/10.1038/s41568-020-0263-0

    Article  CAS  PubMed  Google Scholar 

  96. Aguirre-Ghiso, J. A. (2021). Translating the science of cancer dormancy to the clinic. Cancer Res., 81(18), 4673–4675. https://doi.org/10.1158/0008-5472.CAN-21-1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao, H., Chakraborty, G., Lee-Lim, A. P., Mo, Q., Decker, M., Vonica, A., et al. (2012). The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 150(4), 764–779. https://doi.org/10.1016/j.cell.2012.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., & Stainier, D. Y. R. (2013). The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol., 15(7), 807–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Roberts, D. D. (2008). Thrombospondins: from structure to therapeutics. Cell. Mol. Life Sci., 65(5), 669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., et al. (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Investig., 118(12), 3917–3929. https://doi.org/10.1172/JCI35512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mao, W., Peters, H. L., Sutton, M. N., Orozco, A. F., Pang, L., Yang, H., et al. (2019). The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer, 125(8), 1267–1280.

    Article  CAS  PubMed  Google Scholar 

  102. Sutton, M. N., Lu, Z., Li, Y.-C., Zhou, Y., Huang, T., Reger, A. S., et al. (2019). DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell rep, 29(11), 3448–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barkan, D., El Touny, L. H., Michalowski, A. M., Smith, J. A., Chu, I., Davis, A. S., & Gauldie, J. (2010). Metastatic growth from dormant cells induced by a Col-I–enriched fibrotic environmentmetastatic outgrowth from dormant tumor cells. Cancer res., 70(14), 5706–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Du, C., Zheng, Z., Li, D., Chen, L., Li, N., Yi, X., & Xie, X. (2016). BKCa promotes growth and metastasis of prostate cancer through facilitating the coupling between αvβ3 integrin and FAK. Oncotarget, 7(26), 40174.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer res., 63(7), 1684–1695.

    CAS  PubMed  Google Scholar 

  106. Park, S.-Y., & Nam, J.-S. (2020). The force awakens: metastatic dormant cancer cells. Exp. Mol. Med., 52(4), 569–581. https://doi.org/10.1038/s12276-020-0423-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Correa, R. J. M., Peart, T., Valdes, Y. R., DiMattia, G. E., & Shepherd, T. G. (2012). Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis, 33(1), 49–58. https://doi.org/10.1093/carcin/bgr241

    Article  CAS  PubMed  Google Scholar 

  108. Yang, L., He, C., Chen, X., Su, L., Liu, B., & Zhang, H. (2016). Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation. Oncotarget, 7(30), 48346.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Klionsky, D. J., Petroni, G., Amaravadi, R. K., Baehrecke, E. H., Ballabio, A., Boya, P., et al. (2021). Autophagy in major human diseases. The EMBO j., 40(19), e108863. https://doi.org/10.15252/embj.2021108863

    Article  CAS  PubMed  Google Scholar 

  110. Panda, P. K., Mukhopadhyay, S., Das, D. N., Sinha, N., Naik, P. P., & Bhutia, S. K. (2015). Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin. Cell Dev. Biol., 39, 43–55. https://doi.org/10.1016/j.semcdb.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  111. Chavez-Dominguez, R., Perez-Medina, M., Lopez-Gonzalez, J. S., Galicia-Velasco, M., & Aguilar-Cazares, D. (2020). The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front. Oncol., 10, 578418. https://doi.org/10.3389/fonc.2020.578418

    Article  PubMed  PubMed Central  Google Scholar 

  112. Coto-Llerena, M., Tosti, N., Taha-Mehlitz, S., Kancherla, V., Paradiso, V., Gallon, J., et al. (2021). Transcriptional enhancer factor domain family member 4 exerts an oncogenic role in hepatocellular carcinoma by hippo-independent regulation of heat shock protein 70 family members. Hepatol. Commun., 5(4), 661–674. https://doi.org/10.1002/hep4.1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., et al. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes & dev., 25(8), 795–800.

    Article  CAS  Google Scholar 

  114. Wei, H., Wei, S., Gan, B., Peng, X., Zou, W., & Guan, J.-L. (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes & dev., 25(14), 1510–1527.

    Article  CAS  Google Scholar 

  115. Ye, C., Yu, X., Liu, X., Zhan, P., Nie, T., Guo, R., et al. (2018). Beclin-1 knockdown decreases proliferation, invasion and migration of Ewing sarcoma SK-ES-1 cells via inhibition of MMP-9 Corrigendum in/10.3892/ol. 2020.12372. Onco. Lett., 15(3), 3221–3225.

    Google Scholar 

  116. Liu, M., Jiang, L., Fu, X., Wang, W., Ma, J., Tian, T., et al. (2018). Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer sci., 109(10), 3055–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yun, C. W., & Lee, S. H. (2018). The roles of autophagy in cancer. Int. J. Mol. Sci., 19(11), 3466.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Guo, J. Y., Teng, X., Laddha, S. V., Ma, S., Van Nostrand, S. C., Yang, Y., et al. (2016). Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes & dev., 30(15), 1704–1717.

    Article  CAS  Google Scholar 

  119. Xie, X., Koh, J. Y., Price, S., White, E., & Mehnert, J. M. (2015). Atg7 overcomes senescence and promotes growth of Braf V600E-driven melanoma. Cancer disc., 5(4), 410–423.

    Article  CAS  Google Scholar 

  120. Strohecker, A. M., Guo, J. Y., Karsli-Uzunbas, G., Price, S. M., Chen, G. J., Mathew, R., et al. (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E–driven lung tumorsautophagy promotes BrafV600E-driven lung tumor growth. Cancer disc., 3(11), 1272–1285.

    Article  CAS  Google Scholar 

  121. Lopiccolo, J., Kawabata, S., Gills, J. J., & Dennis, P. A. (2021). Combining nelfinavir with chloroquine inhibits in vivo growth of human lung cancer xenograft tumors. in vivo, 35(1), 141–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, S., Ren, X., Liang, Y., Yan, Y., Zhou, Y., Hu, J., et al. (2020). KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene, 39(2), 249–261. https://doi.org/10.1038/s41388-019-0978-0

    Article  CAS  PubMed  Google Scholar 

  123. Wang, F.-T., Wang, H., Wang, Q.-W., Pan, M.-S., Li, X.-P., Sun, W., & Fan, Y.-Z. (2020). Inhibition of autophagy by chloroquine enhances the antitumor activity of gemcitabine for gallbladder cancer. Cancer Chemother Pharmacol, 86(2), 221–232.

    Article  CAS  PubMed  Google Scholar 

  124. Chen, H., Lin, C., Lu, C., Wang, Y., Han, R., Li, L., & He, Y. (2019). Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin Respir J, 13(12), 781–790. https://doi.org/10.1111/crj.13091

    Article  CAS  PubMed  Google Scholar 

  125. Bi, Y., Jiang, Y., Li, X., Hou, G., & Li, K. (2021). Rapamycin inhibits lung squamous cell carcinoma growth by downregulating glypican-3/Wnt/β-catenin signaling and autophagy. J. Cancer Res. Clin. Oncol., 147(2), 499–505. https://doi.org/10.1007/s00432-020-03422-4

    Article  CAS  PubMed  Google Scholar 

  126. Das, C. K., Mandal, M., & Kögel, D. (2018). Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev., 37(4), 749–766. https://doi.org/10.1007/s10555-018-9727-z

    Article  CAS  PubMed  Google Scholar 

  127. Bortnik, S., Tessier-Cloutier, B., Leung, S., Xu, J., Asleh, K., Burugu, S., et al. (2020). Differential expression and prognostic relevance of autophagy-related markers ATG4B, GABARAP, and LC3B in breast cancer. Breast Cancer Res. Treat., 183(3), 525–547.

    Article  CAS  PubMed  Google Scholar 

  128. Chen, J. L., David, J., Cook-Spaeth, D., Casey, S., Cohen, D., Selvendiran, K., et al. (2017). Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. Mol. Cancer Res., 15(1), 26–34.

    Article  CAS  PubMed  Google Scholar 

  129. Lu, J., Zhu, L., Zheng, L., Cui, Q., Zhu, H., Zhao, H., et al. (2018). Overexpression of ULK1 represents a potential diagnostic marker for clear cell renal carcinoma and the antitumor effects of SBI-0206965. EBioMedicine, 34, 85–93. https://doi.org/10.1016/j.ebiom.2018.07.034

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chen, Y., & Gibson, S. B. (2021). Three dimensions of autophagy in regulating tumor growth: cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis BBA-MOL BASIS DIS, 1867(12), 166265. https://doi.org/10.1016/j.bbadis.2021.166265

    Article  CAS  Google Scholar 

  131. Smith, A. G., & Macleod, K. F. (2019). Autophagy, cancer stem cells and drug resistance. J Pathol, 247(5), 708–718. https://doi.org/10.1002/path.5222

    Article  PubMed  PubMed Central  Google Scholar 

  132. Akkoc, Y., Peker, N., Akcay, A., & Gozuacik, D. (2021). Autophagy and cancer dormancy. Front Oncol, 11, 277. https://doi.org/10.3389/fonc.2021.627023

    Article  Google Scholar 

  133. Mowers, E. E., Sharifi, M. N., & Macleod, K. F. (2018). Functions of autophagy in the tumor microenvironment and cancer metastasis. The FEBS J., 285(10), 1751–1766. https://doi.org/10.1111/febs.14388

    Article  CAS  PubMed  Google Scholar 

  134. Kimmelman, A. C., & White, E. (2017). Autophagy and tumor metabolism. Cell metabolism, 25(5), 1037–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J., & Mazure, N. M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 29(10), 2570–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hu, Y.-L., DeLay, M., Jahangiri, A., Molinaro, A. M., Rose, S. D., Carbonell, W. S., & Aghi, M. K. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastomaautophagy mediates resistance to antiangiogenic therapy. Cancer res., 72(7), 1773–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu, Y., Liu, B., Li, X., Lu, D., Yang, L., Chen, L., et al. (2022). ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell death & dis., 13(1), 1–13.

    Article  Google Scholar 

  138. Avivar-Valderas, A., Salas, E., Bobrovnikova-Marjon, E., Diehl, J. A., Nagi, C., Debnath, J., & Aguirre-Ghiso, J. A. (2011). PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell. Biol., 31(17), 3616–3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Avivar-Valderas, A., Bobrovnikova-Marjon, E., Alan Diehl, J., Bardeesy, N., Debnath, J., & Aguirre-Ghiso, J. A. (2013). Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene, 32(41), 4932–4940.

    Article  CAS  PubMed  Google Scholar 

  140. Fu, X.-T., Shi, Y.-H., Zhou, J., Peng, Y.-F., Liu, W.-R., Shi, G.-M., et al. (2018). MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer lett., 412, 108–117.

    Article  CAS  PubMed  Google Scholar 

  141. Peng, Y.-F., Shi, Y.-H., Ding, Z.-B., Ke, A.-W., Gu, C.-Y., Hui, B., et al. (2013). Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy, 9(12), 2056–2068.

    Article  CAS  PubMed  Google Scholar 

  142. Sandilands, E., Schoenherr, C., & Frame, M. C. (2015). p70S6K is regulated by focal adhesion kinase and is required for Src-selective autophagy. Cellular sig., 27(9), 1816–1823.

    Article  CAS  Google Scholar 

  143. Cheng, Z., Zhu, Q., Dee, R., Opheim, Z., Mack, C. P., Cyr, D. M., & Taylor, J. M. (2017). Focal adhesion kinase-mediated phosphorylation of Beclin1 protein suppresses cardiomyocyte autophagy and initiates hypertrophic growth. J. Biol. Chem., 292(6), 2065–2079. https://doi.org/10.1074/jbc.M116.758268

    Article  CAS  PubMed  Google Scholar 

  144. Zhao, M., Finlay, D., Kwong, E., Liddington, R., Viollet, B., Sasaoka, N., & Vuori, K. (2022). Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell. Signal, 89, 110170. https://doi.org/10.1016/j.cellsig.2021.110170

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, M., Finlay, D., Liddington, R., & Vuori, K. (2022). SRC plays a specific role in the cross-talk between apoptosis and autophagy via phosphorylation of a novel regulatory site on AMPK. Autophagy Reports, 1(1), 38–41. https://doi.org/10.1080/27694127.2022.2047266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abbi, S., Ueda, H., Zheng, C., Cooper, L. A., Zhao, J., Christopher, R., & Guan, J.-L. (2002). Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol. Biol. Cell., 13(9), 3178–3191. https://doi.org/10.1091/mbc.e02-05-0295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sandilands, E., Serrels, B., McEwan, D. G., Morton, J. P., Macagno, J. P., McLeod, K., et al. (2012). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol., 14(1), 51–60. https://doi.org/10.1038/ncb2386

    Article  CAS  Google Scholar 

  148. Schoenherr, C., Byron, A., Sandilands, E., Paliashvili, K., Baillie, G. S., Garcia-Munoz, A., et al. (2017). Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks. eLife, 6, e23172. https://doi.org/10.7554/eLife.23172

    Article  PubMed  PubMed Central  Google Scholar 

  149. Song, Q., Mao, B., Cheng, J., Gao, Y., Jiang, K., Chen, J., et al. (2015). YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLOS ONE, 10(3), e0120790.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pavel, M., Renna, M., Park, S. J., Menzies, F. M., Ricketts, T., Füllgrabe, J., et al. (2018). Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun., 9(1), 2961. https://doi.org/10.1038/s41467-018-05388-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Totaro, A., Zhuang, Q., Panciera, T., Battilana, G., Azzolin, L., Brumana, G., et al. (2019). Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc. Natl. Acad. Sci. U.S.A., 116(36), 17848–17857. https://doi.org/10.1073/pnas.1908228116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jiang, Y., Ji, F., Liu, Y., He, M., Zhang, Z., Yang, J., et al. (2017). Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol Rep, 38(6), 3668–3676. https://doi.org/10.3892/or.2017.6035

    Article  CAS  PubMed  Google Scholar 

  153. Xiao, L., Shi, X.-Y., Zhang, Y., Zhu, Y., Zhu, L., Tian, W., et al. (2016). YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. OncoTargets Ther., 9, 1105.

    CAS  Google Scholar 

  154. Chen, W., Bai, Y., Patel, C., & Geng, F. (2019). Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem. Biophys. Res. Commun., 520(2), 263–268. https://doi.org/10.1016/j.bbrc.2019.09.133

    Article  CAS  PubMed  Google Scholar 

  155. Park, H. S., Lee, D.-H., Kang, D. H., Yeo, M.-K., Bae, G., Lee, D., et al. (2021). Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma. Cancer Med., 10(4), 1405–1417. https://doi.org/10.1002/cam4.3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, M., Zhang, Y., Jiang, Y., Wang, K., Wang, X., Zhou, D., et al. (2021). YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J. Exp. Clin. Cancer Res., 40(1), 99. https://doi.org/10.1186/s13046-021-01897-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tong, H., Yin, H., Hossain, M. A., Wang, Y., Wu, F., Dong, X., et al. (2019). Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation. J. Cell. Biochem., 120(4), 5118–5127. https://doi.org/10.1002/jcb.27788

    Article  CAS  PubMed  Google Scholar 

  158. Li, J., Yang, B., Zhou, Q., Wu, Y., Shang, D., Guo, Y., et al. (2013). Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis, 34(6), 1343–1351. https://doi.org/10.1093/carcin/bgt063

    Article  CAS  PubMed  Google Scholar 

  159. Hussein, M. R. (2005). Transforming growth factor-β and malignant melanoma: molecular mechanisms. J. Cutan. Pathol., 32(6), 389–395. https://doi.org/10.1111/j.0303-6987.2005.00356.x

    Article  PubMed  Google Scholar 

  160. Sosa, M. S., Bragado, P., Debnath, J., & Aguirre-Ghiso, J. A. (2013). In H. Enderling, N. Almog, & L. Hlatky (Eds.), Regulation of tumor cell dormancy by tissue microenvironments and autophagy BT - systems biology of tumor dormancy (pp. 73–89). New York, NY, Springer New York.

    Google Scholar 

  161. Dash, S., Sarashetti, P. M., Rajashekar, B., Chowdhury, R., & Mukherjee, S. (2018). TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment. Oncotarget, 9(5), 6433.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Alizadeh, J., Glogowska, A., Thliveris, J., Kalantari, F., Shojaei, S., Hombach-Klonisch, S., et al. (2018). Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular. Cell Res., 1865(5), 749–768. https://doi.org/10.1016/j.bbamcr.2018.02.007

    Article  CAS  Google Scholar 

  163. Trelford, C. B., & Di Guglielmo, G. M. (2022). Autophagy regulates transforming growth factor β signaling and receptor trafficking. Biochimica et Biophysica Acta (BBA) - Molecular. Cell Res., 1869(9), 119284. https://doi.org/10.1016/j.bbamcr.2022.119284

    Article  CAS  Google Scholar 

  164. Yeo, S. K., Wen, J., Chen, S., & Guan, J.-L. (2016). Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signalingregulation of distinct breast cancer stem cells by autophagy. Cancer res., 76(11), 3397–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pribluda, A., de la Cruz, C. C., & Jackson, E. L. (2015). Intratumoral heterogeneity: from diversity comes resistance. Cli. Cancer Res., 21(13), 2916–2923. https://doi.org/10.1158/1078-0432.CCR-14-1213

    Article  CAS  Google Scholar 

  166. De Conti, G., Dias, M. H., & Bernards, R. (2021). Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers. https://doi.org/10.3390/cancers13051118

  167. Gupta, A., Roy, S., Lazar, A. J. F., Wang, W.-L., McAuliffe, J. C., Reynoso, D., et al. (2010). Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc. Natl. Acad. Sci. U.S.A., 201000248. https://doi.org/10.1073/pnas.1000248107

  168. Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514(7524), 628–632. https://doi.org/10.1038/nature13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yu, Z., Zhou, R., Zhao, Y., Pan, Y., Liang, H., Zhang, J.-S., et al. (2019). Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif., 52(2), e12568. https://doi.org/10.1111/cpr.12568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shimizu, T., Sugihara, E., Yamaguchi-Iwai, S., Tamaki, S., Koyama, Y., Kamel, W., et al. (2014). IGF2 preserves osteosarcoma cell survival by creating an autophagic state of Dormancy That Protects Cells against Chemotherapeutic StressIGF/insulin signaling induces dormancy in osteosarcoma. Cancer res., 74(22), 6531–6541.

    Article  CAS  PubMed  Google Scholar 

  171. Correa, R. J. M., Valdes, Y. R., Peart, T. M., Fazio, E. N., Bertrand, M., McGee, J., et al. (2014). Combination of AKT inhibition with autophagy blockade effectively reduces ascites-derived ovarian cancer cell viability. Carcinogenesis, 35(9), 1951–1961. https://doi.org/10.1093/carcin/bgu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, J. K., Jung, Y., Wang, J., Joseph, J., Mishra, A., Hill, E. E., et al. (2013). TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia, 15(9), 1064–1074. https://doi.org/10.1593/neo.13402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lu, Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. L., & Bast, R. C. (2014). ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ, 21(8), 1275–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. You, B., Xia, T., Gu, M., Zhang, Z., Zhang, Q., Shen, J., et al. (2022). AMPK-mTOR-mediated activation of autophagy promotes formation of dormant polyploid giant cancer cells. Cancer Res, 82(5), 846–858. https://doi.org/10.1158/0008-5472.CAN-21-2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lu, Z., Baquero, M. T., Yang, H., Yang, M., Reger, A. S., Kim, C., et al. (2014). DIRAS3 regulates the autophagosome initiation complex in dormant ovarian cancer cells. Autophagy, 10(6), 1071–1092. https://doi.org/10.4161/auto.28577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Esposito, A., Ferraresi, A., Salwa, A., Vidoni, C., Dhanasekaran, D. N., & Isidoro, C. (2022). Resveratrol contrasts IL-6 pro-growth effects and promotes autophagy-mediated cancer cell dormancy in 3D ovarian cancer: role of miR-1305 and of its target ARH-I. Cancers., 14(9), 2142. https://doi.org/10.3390/cancers14092142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Amend, S. R., Torga, G., Lin, K., Kostecka, L. G., de Marzo, A., Austin, R. H., & Pienta, K. J. (2019). Polyploid giant cancer cells: unrecognized actuators of tumorigenesis, metastasis, and resistance. The Prostate, 79(13), 1489–1497.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Dudkowska, M., Staniak, K., Bojko, A., & Sikora, E. (2021). Chapter Five - The role of autophagy in escaping therapy-induced polyploidy/senescence. In D. A. Gewirtz, P. B. B. T.-A, & C. R. Fisher (Eds.), Autophagy and senescence in cancer therapy (Vol. 150, pp. 209–247). Academic Press.

    Chapter  Google Scholar 

  179. Wang, L., Ouyang, M., Xing, S., Zhao, S., Liu, S., Sun, L., & Yu, H. (2022). Mesenchymal stem cells and their derived exosomes promote malignant phenotype of polyploid non-small-cell lung cancer cells through AMPK signaling pathway. Anal. Cell. Pathol, 2022, 8708202. https://doi.org/10.1155/2022/8708202

    Article  CAS  Google Scholar 

  180. Peart, T., Ramos Valdes, Y., Correa, R. J. M., Fazio, E., Bertrand, M., McGee, J., et al. (2015). Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids. Oncotarget, 6(26), 22424–22438. https://doi.org/10.18632/oncotarget.4211

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hampsch, R. A., Wells, J. D., Traphagen, N. A., McCleery, C. F., Fields, J. L., Shee, K., et al. (2020). AMPK activation by metformin promotes survival of dormant ER+ breast cancer cells. Clin. Cancer Res., 26(14), 3707–3719. https://doi.org/10.1158/1078-0432.CCR-20-0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu, J., Niu, N., Li, X., Zhang, X., & Sood, A. K. (2022). The life cycle of polyploid giant cancer cells and dormancy in cancer: opportunities for novel therapeutic interventions. Semin. Cancer Biol., 81, 132–144. https://doi.org/10.1016/j.semcancer.2021.10.005

    Article  CAS  PubMed  Google Scholar 

  183. Alhasan, B. A., Gordeev, S. A., Knyazeva, A. R., Aleksandrova, K. V., Margulis, B. A., Guzhova, I. V., & Suvorova, I. I. (2021). The mTOR pathway in pluripotent stem cells: lessons for understanding cancer cell dormancy. Membranes, 11(11). https://doi.org/10.3390/membranes11110858

  184. Bulut-Karslioglu, A., Biechele, S., Jin, H., Macrae, T. A., Hejna, M., Gertsenstein, M., et al. (2016). Inhibition of mTOR induces a paused pluripotent state. Nature, 540(7631), 119–123. https://doi.org/10.1038/nature20578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hussein, A. M., Wang, Y., Mathieu, J., Margaretha, L., Song, C., Jones, D. C., et al. (2020). Metabolic control over mTOR-dependent diapause-like state. Dev. cell, 52(2), 236–250.e7. https://doi.org/10.1016/j.devcel.2019.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Arun, R. P., Sivanesan, D., Patra, B., Varadaraj, S., & Verma, R. S. (2019). Simulated microgravity increases polyploid giant cancer cells and nuclear localization of YAP. Sci. Reports, 9(1), 10684. https://doi.org/10.1038/s41598-019-47116-5

    Article  CAS  Google Scholar 

  187. Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J., & Liu, J. (2014). Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 33(1), 116–128.

    Article  CAS  PubMed  Google Scholar 

  188. Díaz-Carballo, D., Saka, S., Klein, J., Rennkamp, T., Acikelli, A. H., Malak, S., et al. (2018). A distinct oncogenerative multinucleated cancer cell serves as a source of stemness and tumor heterogeneity. Cancer Res., 78(9), 2318–2331. https://doi.org/10.1158/0008-5472.CAN-17-1861

    Article  CAS  PubMed  Google Scholar 

  189. Niu, N., Mercado-Uribe, I., & Liu, J. (2017). Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene, 36(34), 4887–4900. https://doi.org/10.1038/onc.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Scognamiglio, R., Cabezas-Wallscheid, N., Thier, M. C., Altamura, S., Reyes, A., Prendergast, Á. M., et al. (2016). Myc depletion induces a pluripotent dormant state mimicking diapause. Cell, 164(4), 668–680. https://doi.org/10.1016/j.cell.2015.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dhimolea, E., de Matos Simoes, R., Kansara, D., & Al’Khafaji, A., Bouyssou, J., Weng, X., … Mitsiades, C. S. (2021). An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell, 39(2), 240–256.e11. https://doi.org/10.1016/j.ccell.2020.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhao, Y., Wu, H., Xing, X., Ma, Y., Ji, S., Xu, X., et al. (2020). CD13 induces autophagy to promote hepatocellular carcinoma cell chemoresistance through the P38/Hsp27/CREB/ATG7 pathway. J. Pharmacol. Exp. Ther., 374(3), 512–520.

    Article  CAS  PubMed  Google Scholar 

  193. Paillas, S., Causse, A., Marzi, L., De Medina, P., Poirot, M., Denis, V., et al. (2012). MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy, 8(7), 1098–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W., & Green, J. E. (2018). Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. comm, 9(1), 1944. https://doi.org/10.1038/s41467-018-04070-6

    Article  CAS  Google Scholar 

  195. Aqbi, H. F., Tyutyunyk-Massey, L., Keim, R. C., Butler, S. E., Thekkudan, T., Joshi, S., et al. (2018). Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget, 9(31), 22113.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Petherick, K. J., Williams, A. C., Lane, J. D., Ordóñez-Morán, P., Huelsken, J., Collard, T. J., et al. (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. The EMBO j., 32(13), 1903–1916.

    Article  CAS  PubMed  Google Scholar 

  197. Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res., 1868(3), 118926.

    CAS  Google Scholar 

  198. Zada, S., Hwang, J. S., Lai, T. H., Pham, T. M., Ahmed, M., Elashkar, O., et al. (2022). Autophagy-mediated degradation of NOTCH1 intracellular domain controls the epithelial to mesenchymal transition and cancer metastasis. Cell & Biosci., 12(1), 17. https://doi.org/10.1186/s13578-022-00752-3

    Article  CAS  Google Scholar 

  199. Ahn, J.-S., Ann, E.-J., Kim, M.-Y., Yoon, J.-H., Lee, H.-J., Jo, E.-H., et al. (2016). Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 7(48), 79047.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Natsumeda, M., Maitani, K., Liu, Y., Miyahara, H., Kaur, H., Chu, Q., et al. (2016). Targeting notch signaling and autophagy increases cytotoxicity in glioblastoma neurospheres. Brain Pathol., 26(6), 713–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lim, S. M., Mohamad Hanif, E. A., & Chin, S.-F. (2021). Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell & Biosci., 11(1), 56. https://doi.org/10.1186/s13578-021-00570-z

    Article  CAS  Google Scholar 

  202. Zhang, B., & Liu, L. (2021). Autophagy is a double-edged sword in the therapy of colorectal cancer. Onco Lett., 21(5), 1–8.

    Google Scholar 

  203. Dower, C. M., Bhat, N., Gebru, M. T., Chen, L., Wills, C. A., Miller, B. A., & Wang, H.-G. (2018). Targeted inhibition of ULK1 promotes apoptosis and suppresses tumor growth and metastasis in neuroblastoma. Mol. Cancer Ther., 17(11), 2365–2376. https://doi.org/10.1158/1535-7163.MCT-18-0176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hwang, D. Y., Eom, J.-I., Jang, J. E., Jeung, H.-K., Chung, H., Kim, J. S., et al. (2020). ULK1 inhibition as a targeted therapeutic strategy for FLT3-ITD-mutated acute myeloid leukemia. J. Exp. Clin. Cancer Res., 39(1), 85. https://doi.org/10.1186/s13046-020-01580-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Skah, S., Richartz, N., Duthil, E., Gilljam, K. M., Bindesbøll, C., Naderi, E. H., et al. (2018). cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget, 9(54), 30434.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Avsec, D., Jakoš Djordjevič, A. T., Kandušer, M., Podgornik, H., Škerget, M., & Mlinarič-Raščan, I. (2021). Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers. https://doi.org/10.3390/cancers13184557

  207. Deng, J., Thennavan, A., Dolgalev, I., Chen, T., Li, J., Marzio, A., et al. (2021). ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat. Cancer, 2(5), 503–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pasquier, B. (2015). SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy, 11(4), 725–726. https://doi.org/10.1080/15548627.2015.1033601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dyczynski, M., Yu, Y., Otrocka, M., Parpal, S., Braga, T., Henley, A. B., et al. (2018). Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett., 435, 32–43. https://doi.org/10.1016/j.canlet.2018.07.028

    Article  CAS  PubMed  Google Scholar 

  210. Noman, M. Z., Parpal, S., Van Moer, K., Xiao, M., Yu, Y., Arakelian, T., et al. (2022). Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. Adv., 6(18), eaax7881. https://doi.org/10.1126/sciadv.aax7881

    Article  CAS  Google Scholar 

  211. McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X.-H., Piao, S., et al. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. U.S.A, 109(21), 8253–8258. https://doi.org/10.1073/pnas.1118193109

    Article  PubMed  PubMed Central  Google Scholar 

  212. Cechakova, L., Ondrej, M., Pavlik, V., Jost, P., Cizkova, D., Bezrouk, A., et al. (2019). A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299. Int. J. Mol. Sci., 20(23). https://doi.org/10.3390/ijms20235881

  213. Rebecca, V. W., Nicastri, M. C., McLaughlin, N., Fennelly, C., McAfee, Q., Ronghe, A., et al. (2017). A unified approach to targeting the lysosome’s degradative and growth signaling roles. Cancer Disc., 7(11), 1266–1283. https://doi.org/10.1158/2159-8290.CD-17-0741

    Article  CAS  Google Scholar 

  214. Rebecca, V. W., Nicastri, M. C., Fennelly, C., Chude, C. I., Barber-Rotenberg, J. S., Ronghe, A., et al. (2019). PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Disc., 9(2), 220–229. https://doi.org/10.1158/2159-8290.CD-18-0706

    Article  CAS  Google Scholar 

  215. Richter, K., Haslbeck, M., & Buchner, J. (2010). The heat shock response: life on the verge of death. Mol. Cell, 40(2), 253–266. https://doi.org/10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  216. Shevtsov, M., Multhoff, G., Mikhaylova, E., Shibata, A., Guzhova, I., & Margulis, B. (2019). Combination of anti-cancer drugs with molecular chaperone inhibitors. Int. J. Mol. Sci., 20(21), 1–22. https://doi.org/10.3390/ijms20215284

    Article  CAS  Google Scholar 

  217. Li, L., Wang, L., You, Q. D., & Xu, X. L. (2020). Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J. Med. Chem., 63(5), 1798–1822. https://doi.org/10.1021/acs.jmedchem.9b00940

    Article  CAS  PubMed  Google Scholar 

  218. Koren, J., & Blagg, B. S. J. (2020). The right tool for the job: an overview of Hsp90 inhibitors. Molecular Cell, 40(2), 253–266.

  219. Xi, C., Hu, Y., Buckhaults, P., Moskophidis, D., & Mivechi, N. F. (2012). Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J. Biol. Chem., 287(42), 35646–35657. https://doi.org/10.1074/jbc.M112.377481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Powell, C. D., Paullin, T. R., Aoisa, C., Menzie, C. J., Ubaldini, A., & Westerheide, S. D. (2016). The heat shock transcription factor HSF1 induces ovarian cancer epithelial-mesenchymal transition in a 3D spheroid growth model. PLoS ONE, 11(12), 1–16. https://doi.org/10.1371/journal.pone.0168389

    Article  CAS  Google Scholar 

  221. Scherz-Shouval, R., Santagata, S., Mendillo, M. L., Sholl, L. M., Ben-Aharon, I., Beck, A. H., et al. (2014). The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell, 158(3), 564–578. https://doi.org/10.1016/j.cell.2014.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., et al. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150(3), 549–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Taldone, T., Wang, T., Rodina, A., Pillarsetty, N. V. K., Digwal, C. S., Sharma, S., et al. (2020). A chemical biology approach to the chaperome in cancer—HSP90 and beyond. Cold Spring Harb. Perspect. Biol., 12(4). https://doi.org/10.1101/cshperspect.a034116

  224. Biebl, M. M., & Buchner, J. (2019). Structure, function, and regulation of the hsp90 machinery. Cold Spring Harb. Perspect. Biol., 11(9). https://doi.org/10.1101/cshperspect.a034017

  225. Neckers, L. (2005). Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr. Med. Chem., 10(9), 733–739. https://doi.org/10.2174/0929867033457818

    Article  Google Scholar 

  226. Leskovar, A., Wegele, H., Werbeck, N. D., Buchner, J., & Reinstein, J. (2008). The ATPase cycle of the mitochondrial Hsp90 analog trap1. J. Biol. Chem., 283(17), 11677–11688. https://doi.org/10.1074/jbc.M709516200

    Article  CAS  PubMed  Google Scholar 

  227. Buc Calderon, P., Beck, R., & Glorieux, C. (2019). Targeting hsp90 family members: a strategy to improve cancer cell death. Biochem. Pharmacol., 164(January), 177–187. https://doi.org/10.1016/j.bcp.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  228. Birbo, B., Madu, E. E., Madu, C. O., Jain, A., & Lu, Y. (2021). Role of hsp90 in cancer. Int. J. Mol. Sci., 22(19), 1–19. https://doi.org/10.3390/ijms221910317

    Article  CAS  Google Scholar 

  229. Bruschi, M., Petretto, A., Cama, A., Pavanello, M., Bartolucci, M., Morana, G., et al. (2021). Potential biomarkers of childhood brain tumor identified by proteomics of cerebrospinal fluid from extraventricular drainage (EVD). Sci. Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-020-80647-w

    Article  CAS  Google Scholar 

  230. Wang, J., Hu, L., Liu, Z., Wang, H., Zhang, H., Song, X., et al. (2022). Identification of heat shock protein 90 as a recurrence related marker in juvenile nasopharyngeal angiofibroma. Am. J. Rhinol., 36(1), 8–17. https://doi.org/10.1177/19458924211012820

    Article  Google Scholar 

  231. Sobhan, P. K., Seervi, M., Joseph, J., Chandrika, B. B., Varghese, S., Santhoshkumar, T. R., & Radhakrishna Pillai, M. (2012). Identification of heat shock protein 90 inhibitors to sensitize drug resistant side population tumor cells using a cell based assay platform. Cancer Lett., 317(1), 78–88. https://doi.org/10.1016/j.canlet.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  232. Liu, B., Shen, Y., Huang, H., Croce, K. D., Wu, M., Fan, Y., et al. (2020). Curcumin derivative C212 inhibits Hsp90 and eliminates both growing and quiescent leukemia cells in deep dormancy. Cell Commun. Signal., 18(1), 1–15.

    Article  Google Scholar 

  233. Schwock, J., Dhani, N., Cao, M. P. J., Zheng, J., Clarkson, R., Radulovich, N., et al. (2009). Targeting focal adhesion kinase with dominant-negative FRNK or Hsp90 inhibitor 17-DMAG suppresses tumor growth and metastasis of SiHa cervical xenografts. Cancer Res., 69(11), 4750–4759. https://doi.org/10.1158/0008-5472.CAN-09-0454

    Article  CAS  PubMed  Google Scholar 

  234. Liu, X., Yan, Z., Huang, L., Guo, M., Zhang, Z., & Guo, C. (2011). Cell surface heat shock protein 90 modulates prostate cancer cell adhesion and invasion through the integrin-β1/ focal adhesion kinase/c-Src signaling pathway. Onco Reports, 25(5), 1343–1351. https://doi.org/10.3892/or.2011.1202

    Article  CAS  Google Scholar 

  235. Yoon, S., Yang, H., Ryu, H.-M., Lee, E., Jo, Y., Seo, S., et al. (2022). Integrin αvβ3 induces HSP90 inhibitor resistance via FAK activation in KRAS-mutant non-small cell lung cancer. Cancer Res Treat, 54(3), 767.

    Article  CAS  PubMed  Google Scholar 

  236. Nagaraju, G. P., Mezina, A., Shaib, W. L., Landry, J., & El-Rayes, B. F. (2016). Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib. Eur. J. of Cancer, 52, 109–119. https://doi.org/10.1016/j.ejca.2015.10.057

    Article  CAS  Google Scholar 

  237. Cho, T. M., Kim, J. Y., Kim, Y. J., Sung, D., Oh, E., Jang, S., et al. (2019). C-terminal HSP90 inhibitor L80 elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Cancer Lett., 447(December 2018), 141–153. https://doi.org/10.1016/j.canlet.2019.01.029

    Article  CAS  PubMed  Google Scholar 

  238. Sun, C., Bai, M., Ke, W., Wang, X., Zhao, X., & Lu, Z. (2021). The HSP90 inhibitor, XL888, enhanced cell apoptosis via downregulating STAT3 after insufficient radiofrequency ablation in hepatocellular carcinoma. Life Sci., 282, 119762. https://doi.org/10.1016/j.lfs.2021.119762

    Article  CAS  PubMed  Google Scholar 

  239. Lee, H. J., Min, H. Y., Yong, Y. S., Ann, J., Nguyen, C. T., La, M. T., et al. (2022). A novel C-terminal heat shock protein 90 inhibitor that overcomes STAT3-Wnt-β-catenin signaling-mediated drug resistance and adverse effects. Theranostics, 27(1), 105–125. https://doi.org/10.7150/thno.63788

    Article  CAS  Google Scholar 

  240. Lettini, G., Sisinni, L., Condelli, V., Matassa, D. S., Simeon, V., Maddalena, F., et al. (2016). TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ, 23(11), 1792–1803. https://doi.org/10.1038/cdd.2016.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen, J. S., Hsu, Y. M., Chen, C. C., Chen, L. L., Lee, C. C., & Huang, T. S. (2010). Secreted heat shock protein 90α induces colorectal cancer cell invasion through CD91/LRP-1 and NF-κB-mediated integrin αV expression. J. Biol. Chem., 285(33), 25458–25466. https://doi.org/10.1074/jbc.M110.139345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. de la Mare, J. A., Jurgens, T., & Edkins, A. L. (2017). Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer, 17(1), 1–16. https://doi.org/10.1186/s12885-017-3190-z

    Article  CAS  Google Scholar 

  243. Aswad, A., & Liu, T. (2021). Targeting heat shock protein 90 for anti-cancer drug development. In Advances in cancer research (Vol. 152, 1st ed.). Elsevier Inc..

    Google Scholar 

  244. Takamizawa, S., Katsuya, Y., Chen, Y.-N., Mizuno, T., Koyama, T., Sudo, K., et al. (2022). Ocular toxicity of investigational anti-cancer drugs in early phase clinical trials. Invest New Drugs. https://doi.org/10.1007/s10637-022-01321-8

  245. Liew, H. Y., Tan, X. Y., Chan, H. H., Khaw, K. Y., & Ong, Y. S. (2022). Natural HSP90 inhibitors as a potential therapeutic intervention in treating cancers: a comprehensive review. Pharmacol. Res., 181, 106260. https://doi.org/10.1016/j.phrs.2022.106260

    Article  CAS  PubMed  Google Scholar 

  246. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 14(1), 105–111. https://doi.org/10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  247. Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2016). In vivo aspects of protein folding and quality control. Science, 353(6294). https://doi.org/10.1126/science.aac4354

  248. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P., & Bukau, B. (2019). The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol, 20(11), 665–680. https://doi.org/10.1038/s41580-019-0133-3

    Article  CAS  PubMed  Google Scholar 

  249. Hoogstra-Berends, F., Meijering, R. A. M., Zhang, D., Heeres, A., Loen, L., Seerden, J. P., et al. (2012). Heat shock protein-inducing compounds as therapeutics to restore proteostasis in atrial fibrillation. Trends Cardiovasc. Med., 22(3), 62–68. https://doi.org/10.1016/j.tcm.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  250. Lee, H. J., Shin, S., Kang, J., Han, K. C., Kim, Y. H., Bae, J. W., & Park, K. H. (2020). HSP90 inhibitor, 17-DMAG, alone and in combination with lapatinib attenuates acquired lapatinib-resistance in er-positive, her2-overexpressing breast cancer cell line. Cancers, 12(9), 1–16. https://doi.org/10.3390/cancers12092630

    Article  CAS  Google Scholar 

  251. Calderwood, S. K., & Gong, J. (2016). Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem. Sci., 41(4), 311–323. https://doi.org/10.1016/j.tibs.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Boudesco, C., Cause, S., Jego, G., & Garrido, C. (2018). Hsp70: a cancer target inside and outside the cell. Methods mol. biol., 1709, 371–396. https://doi.org/10.1007/978-1-4939-7477-1_27

    Article  CAS  PubMed  Google Scholar 

  253. Margulis, B., Tsimokha, A., Zubova, S., & Guzhova, I. (2020). Molecular chaperones and proteolytic machineries regulate protein homeostasis in aging cells. Cells, 9(5). https://doi.org/10.3390/cells9051308

  254. Ambrose, A. J., & Chapman, E. (2021). Function, therapeutic potential, and inhibition of Hsp70 chaperones. J. Med. Chem., 64(11), 7060–7082.

    Article  CAS  PubMed  Google Scholar 

  255. Rodina, A., Wang, T., Yan, P., Gomes, E. D., Dunphy, M. P. S., Pillarsetty, N., et al. (2016). The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature, 538(7625), 397–401. https://doi.org/10.1038/nature19807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Wang, T., Rodina, A., Dunphy, M. P., Corben, A., Modi, S., Guzman, M. L., et al. (2019). Chaperome heterogeneity and its implications for cancer study and treatment. J. Biol. Chem., 294(6), 2162–2179. https://doi.org/10.1074/jbc.REV118.002811

    Article  CAS  PubMed  Google Scholar 

  257. Kumar, S. J., Stokes, J., Singh, U. P., Scissum Gunn, K., Acharya, A., Manne, U., & Mishra, M. (2016). Targeting Hsp70: a possible therapy for cancer. Cancer Lett, 374(1), 156–166. https://doi.org/10.1016/j.canlet.2016.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Gestwicki, J. E., & Shao, H. (2019). Inhibitors and chemical probes for molecular chaperone networks. J. Biol. Chem., 294(6), 2151–2161. https://doi.org/10.1074/jbc.TM118.002813

    Article  CAS  PubMed  Google Scholar 

  259. Budina-Kolomets, A., Webster, M. R., Leu, J. I. J., Jennis, M., Krepler, C., Guerrini, A., et al. (2016). HSP70 inhibition limits FAK-dependent invasion and enhances the response to melanoma treatment with BRAF inhibitors. Cancer Res., 76(9), 2720–2730. https://doi.org/10.1158/0008-5472.CAN-15-2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Sun, G., Cao, Y., Xu, Y., De Huai, P. C., Guo, J., Li, M., & Dai, Y. (2019). Overexpression of Hsc70 promotes proliferation, migration, and invasion of human glioma cells. J. Cell. Biochem., 120(6), 10707–10714. https://doi.org/10.1002/jcb.28362

    Article  CAS  PubMed  Google Scholar 

  261. Lin, Y., Peng, N., Zhuang, H., Zhang, D., Wang, Y., & Hua, Z.-C. (2014). Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC cancer, 14(1), 1–14.

    Article  Google Scholar 

  262. Ogawa, Y., Nakagami, Y., Ishizaki, R., Yoshida, H., Parkinson, K. M., Robertson, C. N., & Paulson, D. F. (2001). Heat shock protein 70 (HSP70) does not prevent the inhibition of cell growth in DU-145 cells treated with TGF-beta1. Anticancer Res., 21(5), 3341–3347.

    CAS  PubMed  Google Scholar 

  263. Yun, C. H., Yoon, S. Y., Nguyen, T. T., Cho, H. Y., Kim, T. H., Kim, S. T., et al. (2010). Geldanamycin inhibits TGF-β signaling through induction of Hsp70. Arch. Biochem. Biophys., 495(1), 8–13. https://doi.org/10.1016/j.abb.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  264. Shi, F., Ma, M., Zhai, R., Ren, Y., Li, K., Wang, H., et al. (2021). Overexpression of heat shock protein 70 inhibits epithelial-mesenchymal transition and cell migration induced by transforming growth factor-β in A549 cells. Cell Stress Chaperones, 26(3), 505–513. https://doi.org/10.1007/s12192-021-01196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Nimmanapalli, R., Gerbino, E., Dalton, W. S., Gandhi, V., & Alsina, M. (2008). HSP70 inhibition reverses cell adhesion mediated and acquired drug resistance in multiple myeloma. Br. J. Haematol., 142(4), 551–561. https://doi.org/10.1111/j.1365-2141.2008.07217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Rigg, R. A., Healy, L. D., Nowak, M. S., Mallet, J., Thierheimer, M. L. D., Pang, J., et al. (2016). Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation. Am. J. Physiol, 310(7), C568–C575. https://doi.org/10.1152/ajpcell.00362.2015

    Article  Google Scholar 

  267. Xu, N.-W., Chen, Y., Liu, W., Chen, Y.-J., Fan, Z.-M., Liu, M., & Li, L.-J. (2018). Inhibition of JAK2/STAT3 signaling pathway suppresses proliferation of Burkitt’s lymphoma Raji cells via cell cycle progression, apoptosis, and oxidative stress by modulating HSP70. Med. Sci. Monit., 24, 6255–6263. https://doi.org/10.12659/MSM.910170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Matsushima-Nishiwaki, R., Takai, S., Adachi, S., Minamitani, C., Yasuda, E., Noda, T., et al. (2008). Phosphorylated heat shock protein 27 represses growth of hepatocellular carcinoma via inhibition of extracellular signal-regulated kinase. J. Biol. Chem., 283(27), 18852–18860. https://doi.org/10.1074/jbc.M801301200

    Article  CAS  PubMed  Google Scholar 

  269. Chen, S. F., Nieh, S., Jao, S. W., Liu, C. L., Wu, C. H., Chang, Y. C., et al. (2012). Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0049275

  270. Willmund, F., Del Alamo, M., Pechmann, S., Chen, T., Albanèse, V., Dammer, E. B., et al. (2013). The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell, 152(1–2), 196–209. https://doi.org/10.1016/j.cell.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Shi, Q. M., Luo, J., Wu, K., Yin, M., Gu, Y. R., & Cheng, X. G. (2016). High level of αB-crystallin contributes to the progression of osteosarcoma. Oncotarget, 7(8), 9007–9016. https://doi.org/10.18632/oncotarget.6928

    Article  PubMed  PubMed Central  Google Scholar 

  272. Volkmann, J., Reuning, U., Rudelius, M., Häfner, N., Schuster, T., Aaron, A. B., et al. (2013). High expression of crystallin αb represents an independent molecular marker for unfavourable ovarian cancer patient outcome and impairs TRAIL- and cisplatin-induced apoptosis in human ovarian cancer cells. Int. J. Cancer., 132(12), 2820–2832. https://doi.org/10.1002/ijc.27975

    Article  CAS  PubMed  Google Scholar 

  273. Yang, M., Li, Y., & Tian, F. (2021). Association between Alpha B-crystallin expression and prognosis in patients with solid tumors: a protocol for systematic review and meta-analysis. Medicine, 100(7), e24831. https://doi.org/10.1097/MD.0000000000024831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ishida, T., Ishii, Y., Tsuruta, M., Okabayashi, K., Akimoto, S., Koishikawa, K., et al. (2017). Cetuximab promotes SN38 sensitivity via suppression of heat shock protein 27 in colorectal cancer cells with wild-type RAS. Onco Reports, 38(2), 926–932. https://doi.org/10.3892/or.2017.5734

    Article  CAS  Google Scholar 

  275. von Rekowski, K. W., König, P., Henze, S., Schlesinger, M., Zawierucha, P., Januchowski, R., & Bendas, G. (2020). Insight into cisplatin-resistance signaling of w1 ovarian cancer cells emerges mtor and hsp27 as targets for sensitization strategies. Int. J. Mol. Sci, 21(23), 1–22. https://doi.org/10.3390/ijms21239240

    Article  CAS  Google Scholar 

  276. Sommer, S., Cui, Y., Brewer, G., & Fuqua, S. A. W. (2005). The c-Yes 3′-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J. Steroid Biochem. Mol. Biol., 97(3), 219–229. https://doi.org/10.1016/j.jsbmb.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  277. Nikotina, A. D., Koludarova, L., Komarova, E. Y., Mikhaylova, E. R., Aksenov, N. D., Suezov, R., et al. (2018). Discovery and optimization of cardenolides inhibiting HSF1 activation in human colon HCT-116 cancer cells. Oncotarget, 9(43), 27268.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Guan, L., Zou, Q., Liu, Q., Lin, Y., & Chen, S. (2020). HSP90 inhibitor ganetespib (STA-9090) inhibits tumor growth in c-Myc-dependent esophageal squamous cell carcinoma. OncoTargets Ther., 13, 2997–3011. https://doi.org/10.2147/OTT.S245813

    Article  CAS  Google Scholar 

  279. Joshi, S., Gomes, E. D. G., Wang, T., Corben, A., Taldone, T., Gandu, S., et al. (2021). Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun. Biol., 4(1), 1–20. https://doi.org/10.1038/s42003-021-02842-3

    Article  CAS  Google Scholar 

  280. Hong, S. K., Starenki, D., Johnson, O. T., Gestwicki, J. E., & Park, J. I. (2022). Analogs of the heat shock protein 70 inhibitor MKT-077 suppress medullary thyroid carcinoma cells. Int. J. Mol. Sci., 23(3). https://doi.org/10.3390/ijms23031063

  281. Sojka, D. R., Hasterok, S., Vydra, N., Toma-jonik, A., Wieczorek, A., Gogler-pigłowska, A., & Scieglinska, D. (2021). Inhibition of the heat shock protein a (Hspa) family potentiates the anticancer effects of manumycin A. Cells, 10(6), 1–15. https://doi.org/10.3390/cells10061418

    Article  CAS  Google Scholar 

  282. Hyun, S. Y., Le, H. T., Min, H.-Y., Pei, H., Lim, Y., Song, I., et al. (2021). Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70. Theranostics, 11(6), 2932–2952. https://doi.org/10.7150/thno.49876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Chen, R., Qiao, Y., Hu, W., Cheng, Q., Xie, H., Zhou, L., et al. (2019). LY2228820 induces synergistic anti-cancer effects with anti-microtubule chemotherapeutic agents independent of P-glycoprotein in multidrug resistant cancer cells. Am. J. Cancer Res., 9(10), 2216.

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., et al. (2019). Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. The FEBS j., 286(2), 241–278.

    Article  CAS  PubMed  Google Scholar 

  285. Hetz, C., & Papa, F. R. (2018). The unfolded protein response and cell fate control. Mol Cell, 69(2), 169–181. https://doi.org/10.1016/j.molcel.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  286. Robinson, C. M., Talty, A., Logue, S. E., Mnich, K., Gorman, A. M., & Samali, A. (2021). An emerging role for the unfolded protein response in pancreatic cancer. Cancers, 13(2). https://doi.org/10.3390/cancers13020261

  287. Huang, J., Pan, H., Wang, J., Wang, T., Huo, X., Ma, Y., et al. (2021). Unfolded protein response in colorectal cancer. Cell & Bio., 11(1), 26. https://doi.org/10.1186/s13578-021-00538-z

    Article  CAS  Google Scholar 

  288. Hart, L. S., Cunningham, J. T., Datta, T., Dey, S., Tameire, F., Lehman, S. L., et al. (2012). ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Investig., 122(12), 4621–4634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Corazzari, M., Rapino, F., Ciccosanti, F., Giglio, P., Antonioli, M., Conti, B., et al. (2015). Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ, 22(6), 946–958.

    Article  CAS  PubMed  Google Scholar 

  290. Madden, E., Logue, S. E., Healy, S. J., Manie, S., & Samali, A. (2019). The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Bio. of the Cell, 111(1), 1–17. https://doi.org/10.1111/boc.201800050

    Article  Google Scholar 

  291. Chen, J., Lynn, E. G., Yousof, T. R., Sharma, H., MacDonald, M. E., Byun, J. H., et al. (2022). Scratching the surface—an overview of the roles of cell surface GRP78 in cancer. Biomedicines, 10(5), 1098. https://doi.org/10.3390/biomedicines10051098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Tosh, D. K., Brackett, C. M., Jung, Y.-H., Gao, Z.-G., Banerjee, M., Blagg, B. S. J., & Jacobson, K. A. (2021). Biological evaluation of 5′-(N-Ethylcarboxamido) adenosine analogues as Grp94-selective inhibitors. ACS Med. Chem. Lett., 12(3), 373–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Xu, X., Chiu, J., Chen, S., & Fang, C. (2021). Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. Br. J. Pharmacol., 178(15), 2911–2930. https://doi.org/10.1111/bph.15493

    Article  CAS  PubMed  Google Scholar 

  294. Hsu, S.-K., Chiu, C.-C., Dahms, H.-U., Chou, C.-K., Cheng, C.-M., Chang, W.-T., et al. (2019). Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci., 20(10). https://doi.org/10.3390/ijms20102518

  295. Payne, K. K. (2022). Cellular stress responses and metabolic reprogramming in cancer progression and dormancy. Semin. Cancer Biol., 78, 45–48. https://doi.org/10.1016/j.semcancer.2021.06.004

    Article  CAS  PubMed  Google Scholar 

  296. Ranganathan, A. C., Zhang, L., Adam, A. P., & Aguirre-Ghiso, J. A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase–like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer res., 66(3), 1702–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bartkowiak, K., Kwiatkowski, M., Buck, F., Gorges, T. M., Nilse, L., Assmann, V., et al. (2015). Disseminated tumor cells persist in the bone marrow of breast cancer patients through sustained activation of the unfolded protein response. Cancer res., 75(24), 5367–5377.

    Article  CAS  PubMed  Google Scholar 

  298. Brewer, J. W., & Diehl, J. A. (2000). PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. U.S.A., 97(23), 12625–12630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2008). Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer res., 68(9), 3260–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. cell, 5(5), 897–904.

    Article  CAS  PubMed  Google Scholar 

  301. Cullinan, S. B., & Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem., 279(19), 20108–20117.

    Article  CAS  PubMed  Google Scholar 

  302. Sandoval, M. V., Fluegen, G., Staschke, K. A., Calvo-Vidal, V., & Aguirre-Ghiso, J. A. (2016). Abstract A45: PERK-inhibition as a possible therapy for hypoxia-induced solitary dormant tumor cells. Cancer Res., 76(7_Supplement), A45–A45.

    Article  Google Scholar 

  303. Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl. Acad. Sci. U.S.A., 105(30), 10519–10524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Back, S. H., Lee, K., Vink, E., & Kaufman, R. J. (2006). Cytoplasmic IRE1α-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J. Biol. Chem., 281(27), 18691–18706.

    Article  CAS  PubMed  Google Scholar 

  305. Romero-Ramirez, L., Cao, H., Nelson, D., Hammond, E., Lee, A.-H., Yoshida, H., et al. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer res., 64(17), 5943–5947.

    Article  CAS  PubMed  Google Scholar 

  306. Chen, X., Iliopoulos, D., Zhang, Q., Tang, Q., Greenblatt, M. B., Hatziapostolou, M., et al. (2014). XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 508(7494), 103–107. https://doi.org/10.1038/nature13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Hu, F., Han, J., Zhai, B., Ming, X., Zhuang, L., Liu, Y., et al. (2014). Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation. Apoptosis, 19(1), 210–223. https://doi.org/10.1007/s10495-013-0914-7

    Article  CAS  PubMed  Google Scholar 

  308. Rouschop, K. M. A., van den Beucken, T., Dubois, L., Niessen, H., Bussink, J., Savelkouls, K., et al. (2010). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Investig., 120(1), 127–141.

    Article  CAS  PubMed  Google Scholar 

  309. B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., et al. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 41(16), 7683–7699.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Li, Y., Cook, K. L., Yu, W., Jin, L., Bouker, K. B., Clarke, R., & Hilakivi-Clarke, L. (2021). Inhibition of antiestrogen-promoted pro-survival autophagy and tamoxifen resistance in breast cancer through vitamin D receptor. Nutrients, 13(5). https://doi.org/10.3390/nu13051715

  311. Cook, K. L., Clarke, P. A. G., Parmar, J., Hu, R., Schwartz-Roberts, J. L., Abu-Asab, M., et al. (2014). Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. The FASEB J., 28(9), 3891–3905. https://doi.org/10.1096/fj.13-247353

    Article  CAS  PubMed  Google Scholar 

  312. Rong, H., Anni, W., Lu, J., Alan, Z., & B., R. R., Hong-Bin, F., & Robert, C. (2015). NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol. Cell. Biol., 35(2), 379–390. https://doi.org/10.1128/MCB.00847-14

    Article  CAS  Google Scholar 

  313. Salaroglio, I. C., Panada, E., Moiso, E., Buondonno, I., Provero, P., Rubinstein, M., et al. (2017). PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer, 16(1), 91. https://doi.org/10.1186/s12943-017-0657-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Ni, M., Zhang, Y., & Lee, A. S. (2011). Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Bio. J, 434(2), 181–188. https://doi.org/10.1042/BJ20101569

    Article  CAS  Google Scholar 

  315. Peng, Y., Li, Z., & Li, Z. (2013). GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem. Biophys. Res. Commun, 440(4), 558–563.

    Article  CAS  PubMed  Google Scholar 

  316. Hernandez, I., & Cohen, M. (2022). Linking cell-surface GRP78 to cancer: from basic research to clinical value of GRP78 antibodies. Cancer Lett., 524, 1–14. https://doi.org/10.1016/j.canlet.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  317. Gopal, U., Mowery, Y., Young, K., & Pizzo, S. V. (2019). Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. J. Biol. Chem., 294(38), 13939–13952.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Chang, H.-L., Chen, H.-A., Bamodu, O. A., Lee, K.-F., Tzeng, Y.-M., Lee, W.-H., & Tsai, J.-T. (2018). Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Tox. in Vitro, 51, 74–82. https://doi.org/10.1016/j.tiv.2018.04.010

    Article  CAS  Google Scholar 

  319. Zhang, L., Li, Z., Fan, Y., Li, H., Li, Z., & Li, Y. (2015). Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling. Int. J. Biochem. Cell Biol., 64, 202–211. https://doi.org/10.1016/j.biocel.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  320. Nami, B., Ghasemi-Dizgah, A., & Vaseghi, A. (2016). Overexpression of molecular chaperons GRP78 and GRP94 in CD44hi/CD24lo breast cancer stem cells. BioImpacts: BI, 6(2), 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Bartkowiak, K., Effenberger, K. E., Harder, S., Andreas, A., Buck, F., Peter-Katalinic, J., et al. (2010). Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J. Proteome Res., 9(6), 3158–3168.

    Article  CAS  PubMed  Google Scholar 

  322. Sanz-Pamplona, R., Aragüés, R., Driouch, K., Martín, B., Oliva, B., Gil, M., et al. (2011). Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2− primary breast tumors. Am. J. Clin. Pathol., 179(2), 564–579.

    Article  Google Scholar 

  323. Martínez-Aranda, A., Hernández, V., Guney, E., Muixí, L., Foj, R., Baixeras, N., et al. (2015). FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget, 6(42), 44254.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Zhang, L., Wang, S., Wangtao, W. Y., Wang, J., Jiang, L., Li, S., Hu, X., & Wang, Q. (2009). Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer inv., 27(4), 453–458.

    Article  CAS  Google Scholar 

  325. Santana-Codina, N., Muixí, L., Foj, R., Sanz-Pamplona, R., Badia-Villanueva, M., Abramowicz, A., et al. (2020). GRP94 promotes brain metastasis by engaging pro-survival autophagy. Neuro-onco, 22(5), 652–664.

    Article  CAS  Google Scholar 

  326. Misra, U. K., Payne, S., & Pizzo, S. V. (2011). Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J. Biol. Chem., 286(2), 1248–1259.

    Article  CAS  PubMed  Google Scholar 

  327. Misra, U. K., Payne, S., & Pizzo, S. V. (2013). The monomeric receptor binding domain of tetrameric α2-macroglobulin binds to cell surface GRP78 triggering equivalent activation of signaling cascades. Biochemistry, 52(23), 4014–4025. https://doi.org/10.1021/bi400376s

    Article  CAS  PubMed  Google Scholar 

  328. Liu, R., Li, X., Gao, W., Zhou, Y., Wey, S., Mitra, S. K., et al. (2013). Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin. Cancer Res., 19(24), 6802–6811. https://doi.org/10.1158/1078-0432.CCR-13-1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Lin, Y. G., Shen, J., Yoo, E., Liu, R., Yen, H.-Y., Mehta, A., et al. (2015). Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis. Oncogene, 34(43), 5418–5426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wey, S., Luo, B., Tseng, C.-C., Ni, M., Zhou, H., Fu, Y., et al. (2012). Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Am. J. Hematol., 119(3), 817–825.

    CAS  Google Scholar 

  331. Kelber, J. A., Panopoulos, A. D., Shani, G., Booker, E. C., Belmonte, J. C., Vale, W. W., & Gray, P. C. (2009). Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene, 28(24), 2324–2336. https://doi.org/10.1038/onc.2009.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Francescangeli, F., Contavalli, P., De Angelis, M. L., Baiocchi, M., Gambara, G., Pagliuca, A., et al. (2015). Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer. Cell Death Differ., 22(10), 1700–1713. https://doi.org/10.1038/cdd.2015.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Karkampouna, S., van der Helm, D., Gray, P. C., Chen, L., Klima, I., Grosjean, J., et al. (2018). CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. The J of Patho., 245(3), 297–310. https://doi.org/10.1002/path.5083

    Article  CAS  Google Scholar 

  334. Francescangeli, F., De Angelis, M. L., Rossi, R., Sette, G., Eramo, A., Boe, A., et al. (2022). CRIPTO is a marker of chemotherapy-induced stem cell expansion in non-small cell lung cancer. Front. in Onco, 12. https://doi.org/10.3389/fonc.2022.830873

  335. Ishii, H., Afify, S. M., Hassan, G., Salomon, D. S., & Seno, M. (2021). Cripto-1 as a potential target of cancer stem cells for immunotherapy. Cancers. 13, 2491. https://doi.org/10.3390/cancers13102491

  336. Zoni, E., Chen, L., Karkampouna, S., Granchi, Z., Verhoef, E. I., La Manna, F., et al. (2017). CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene, 36(33), 4739–4749. https://doi.org/10.1038/onc.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Yun, S., Yun, C. W., Lee, J. H., Kim, S., & Lee, S. H. (2018). Cripto enhances proliferation and survival of mesenchymal stem cells by up-regulating JAK2/STAT3 pathway in a GRP78-dependent manner. Biomol. Ther., 26(5), 464–473. https://doi.org/10.4062/biomolther.2017.099

    Article  CAS  Google Scholar 

  338. Zeng, Q., Gao, Y., & Zhou, Y. (2022). Understanding the role of Cripto-1 in cancer progression and therapeutic strategies. Clin Transl Oncol. https://doi.org/10.1007/s12094-022-03023-2

  339. Du, T., Li, H., Fan, Y., Yuan, L., Guo, X., Zhu, Q., et al. (2019). The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat. Comm., 10(1), 2914. https://doi.org/10.1038/s41467-019-10824-7

    Article  CAS  Google Scholar 

  340. Rangel, D. F., Dubeau, L., Park, R., Chan, P., Ha, D. P., Pulido, M. A., et al. (2021). Endoplasmic reticulum chaperone GRP78/BiP is critical for mutant Kras-driven lung tumorigenesis. Oncogene, 40(20), 3624–3632. https://doi.org/10.1038/s41388-021-01791-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Li, Z., Zhang, L., Zhao, Y., Li, H., Xiao, H., Fu, R., et al. (2013). Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int. J. Biochem. Cell Biol., 45(5), 987–994. https://doi.org/10.1016/j.biocel.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  342. Yuan, X. P., Dong, M., Li, X., & Zhou, J. P. (2015). GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol. Cell. Biochem., 398(1), 55–62. https://doi.org/10.1007/s11010-014-2204-2

    Article  CAS  PubMed  Google Scholar 

  343. Zhao, S., Li, H., Wang, Q., Su, C., Wang, G., Song, H., et al. (2015). The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M. BMC Cancer, 15(1), 389. https://doi.org/10.1186/s12885-015-1401-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Liu, Y., Ji, W., Yue, N., & Zhou, W. (2021). Ubiquitin-conjugating enzyme E2T promotes tumor stem cell characteristics and migration of cervical cancer cells by regulating the GRP78/FAK pathway. Open Life Sci., 1082, 16(1), –1090. https://doi.org/10.1515/biol-2021-0108

  345. Zhong, Y., & Lan, J. (2022). Overexpression of Eukaryotic translation initiation factor 3D induces stem cell-like properties and metastasis in cervix cancer by activating FAK through inhibiting degradation of GRP78. Bioengineered, 13(1), 1952–1961. https://doi.org/10.1080/21655979.2021.2024336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Yao, X., Liu, H., Zhang, X., Zhang, L., Li, X., Wang, C., & Sun, S. (2015). Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PloS one, 10(5), e0125634.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Niu, Z., Wang, M., Zhou, L., Yao, L., Liao, Q., & Zhao, Y. (2015). Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer. Sci Reports, 5(1), 16067. https://doi.org/10.1038/srep16067

    Article  CAS  Google Scholar 

  348. Tseng, C.-C., Stanciauskas, R., Zhang, P., Woo, D., Wu, K., Kelly, K., et al. (2019). GRP78 regulates CD44v membrane homeostasis and cell spreading in tamoxifen-resistant breast cancer. Life sci alliance, 2(4).

  349. Tseng, C.-C., Zhang, P., & Lee, A. S. (2019). The COOH-terminal proline-rich region of GRP78 is a key regulator of its cell surface expression and viability of tamoxifen-resistant breast cancer cells. Neoplasia, 21(8), 837–848. https://doi.org/10.1016/j.neo.2019.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Chiu, C.-C., Lee, L.-Y., Li, Y.-C., Chen, Y.-J., Lu, Y.-C., Li, Y.-L., et al. (2013). Grp78 as a therapeutic target for refractory head–neck cancer with CD24−CD44+ stemness phenotype. Cancer Gene Ther., 20(11), 606–615. https://doi.org/10.1038/cgt.2013.64

    Article  CAS  PubMed  Google Scholar 

  351. Dauer, P., Sharma, N. S., Gupta, V. K., Durden, B., Hadad, R., Banerjee, S., et al. (2019). ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness.”. Cell Death Dis., 10(2), 132. https://doi.org/10.1038/s41419-019-1408-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Schneider, M., Winkler, K., Kell, R., Pfaffl, M. W., Atkinson, M. J., & Moertl, S. (2022). The chaperone protein GRP78 promotes survival and migration of head and neck cancer after direct radiation exposure and extracellular vesicle-transfer. Front Oncol, 12.

  353. Li, B., Cheng Liang, X., Yang Peng, Y., & Li Quan, Z. (2013). GRP78 mediates radiation resistance of a stem cell-like subpopulation within the MCF-7 breast cancer cell line. Oncol Rep, 30(5), 2119–2126. https://doi.org/10.3892/or.2013.2710

    Article  CAS  PubMed  Google Scholar 

  354. Conner, C., Lager, T. W., Guldner, I. H., Wu, M.-Z., Hishida, Y., Hishida, T., et al. (2020). Cell surface GRP78 promotes stemness in normal and neoplastic cells. Sci. reports, 10(1), 1–11.

    Google Scholar 

  355. Mo, L., Bachelder, R. E., Kennedy, M., Chen, P.-H., Chi, J.-T., Berchuck, A., et al. (2015). Syngeneic murine ovarian cancer model reveals that ascites enriches for ovarian cancer stem-like cells expressing membrane GRP78. Mol. Cancer Ther., 14(3), 747–756. https://doi.org/10.1158/1535-7163.MCT-14-0579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Lager, T. W., Conner, C., Keating, C. R., Warshaw, J. N., & Panopoulos, A. D. (2021). Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene, 40(23), 4050–4059. https://doi.org/10.1038/s41388-021-01821-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Xiong, H., Xiao, H., Luo, C., Chen, L., Liu, X., Hu, Z., et al. (2019). GRP78 activates the Wnt/HOXB9 pathway to promote invasion and metastasis of hepatocellular carcinoma by chaperoning LRP6. Exp. Cell Res., 383(1), 111493.

    Article  CAS  PubMed  Google Scholar 

  358. Liu, B., Staron, M., Hong, F., Wu, B. X., Sun, S., Morales, C., et al. (2013). Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proc. Natl. Acad. Sci. U.S.A., 110(17), 6877–6882. https://doi.org/10.1073/pnas.1302933110

    Article  PubMed  PubMed Central  Google Scholar 

  359. Hua, Y., White-Gilbertson, S., Kellner, J., Rachidi, S., Usmani, S. Z., Chiosis, G., et al. (2013). Molecular chaperone gp96 is a novel therapeutic target of multiple myelomaRoles of gp96 in regulating myeloma. Clin. Cancer Res., 19(22), 6242–6251.

    Article  CAS  PubMed  Google Scholar 

  360. Hu, T., Xie, N., Qin, C., Wang, J., & You, Y. (2015). Glucose-regulated protein 94 is a novel glioma biomarker and promotes the aggressiveness of glioma via Wnt/β-catenin signaling pathway. Tumor Biol., 36(12), 9357–9364.

    Article  CAS  Google Scholar 

  361. Shen, J., Yao, L., Lin, Y. G., DeMayo, F. J., Lydon, J. P., Dubeau, L., & Lee, A. S. (2016). Glucose-regulated protein 94 deficiency induces squamous cell metaplasia and suppresses PTEN-null driven endometrial epithelial tumor development. Oncotarget, 7(12), 14885.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Hou, J., Li, X., Li, C., Sun, L., Zhao, Y., Zhao, J., & Meng, S. (2015). Plasma membrane gp96 enhances invasion and metastatic potential of liver cancer via regulation of uPAR. Mol. Oncol., 9(7), 1312–1323. https://doi.org/10.1016/j.molonc.2015.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Duan, X., Iwanowycz, S., Ngoi, S., Hill, M., Zhao, Q., & Liu, B. (2021). Molecular chaperone GRP94/GP96 in cancers: oncogenesis and therapeutic target. Front Oncol, 11, 629846.

    Article  PubMed  PubMed Central  Google Scholar 

  364. Backer, J. M., Krivoshein, A. V., Hamby, C. V., Pizzonia, J., Gilbert, K. S., Ray, Y. S., et al. (2009). Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia, 11(11), 1165–IN11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Rasche, L., Duell, J., Morgner, C., Chatterjee, M., Hensel, F., Rosenwald, A., et al. (2013). The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PloS one, 8(5), e63414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Axten, J. M., Medina, J. R., Feng, Y., Shu, A., Romeril, S. P., Grant, S. W., et al. (2012). Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem., 55(16), 7193–7207. https://doi.org/10.1021/jm300713s

    Article  CAS  PubMed  Google Scholar 

  367. Atkins, C., Liu, Q., Minthorn, E., Zhang, S.-Y., Figueroa, D. J., Moss, K., et al. (2013). Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 73(6), 1993–2002. https://doi.org/10.1158/0008-5472.CAN-12-3109

    Article  CAS  PubMed  Google Scholar 

  368. Shi, Z., Yu, X., Yuan, M., Lv, W., Feng, T., Bai, R., & Zhong, H. (2019). Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci. reports, 9(1), 1–8.

    Google Scholar 

  369. Sheng, X., Nenseth, H. Z., Qu, S., Kuzu, O. F., Frahnow, T., Simon, L., et al. (2019). IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Comm., 10(1), 323. https://doi.org/10.1038/s41467-018-08152-3

    Article  CAS  Google Scholar 

  370. Papandreou, I., Denko, N. C., Olson, M., Van Melckebeke, H., Lust, S., Tam, A., et al. (2011). Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood, 117(4), 1311–1314. https://doi.org/10.1182/blood-2010-08-303099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., et al. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38).

  372. Cho, J., Min, H.-Y., Pei, H., Wei, X., Sim, J. Y., Park, S.-H., et al. (2020). The ATF6-EGF pathway mediates the awakening of slow-cycling chemoresistant cells and tumor recurrence by stimulating tumor angiogenesis. Cancers, 12(7), 1772. https://doi.org/10.3390/cancers12071772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Gallagher, C. M., Garri, C., Cain, E. L., Ang, K. K.-H., Wilson, C. G., Chen, S., et al. (2016). Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. elife, 5, e11878.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Tang, F., Hu, P., Yang, Z., Xue, C., Gong, J., Sun, S., et al. (2017). SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncol Rep, 37(6), 3449–3458. https://doi.org/10.3892/or.2017.5635

    Article  CAS  PubMed  Google Scholar 

  375. Qiu, L., Zhou, G., & Cao, S. (2020). Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci, 243, 117234. https://doi.org/10.1016/j.lfs.2019.117234

    Article  CAS  PubMed  Google Scholar 

  376. Noman, M. Z., Parpal, S., Van Moer, K., Xiao, M., Yu, Y., Arakelian, T., et al. (2020). Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. adv., 6(18), eaax7881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Lee, Y. S., Bradley, S. T., Gurel, Z., Nickel, K. P., & Kimple, R. J. (2021). Mitophagy induction by ROS-PINK1 signaling protects head and neck cancer from radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 111(3), S56. https://doi.org/10.1016/j.ijrobp.2021.07.145

    Article  Google Scholar 

  378. Marastoni, S., Madariaga, A., Pesic, A., Nair, S. N., Li, Z. J., Shalev, Z., et al. (2022). Repurposing itraconazole and hydroxychloroquine to target lysosomal homeostasis in epithelial ovarian cancer. Cancer Treat Res Commun, 2(5), 293–306. https://doi.org/10.1158/2767-9764.CRC-22-0037

    Article  CAS  Google Scholar 

  379. Anand, K., Niravath, P., Patel, T., Ensor, J., Rodriguez, A., Boone, T., et al. (2021). A phase II study of the efficacy and safety of chloroquine in combination with taxanes in the treatment of patients with advanced or metastatic anthracycline-refractory breast cancer. Clin. Breast Cancer, 21(3), 199–204. https://doi.org/10.1016/j.clbc.2020.09.015

    Article  CAS  PubMed  Google Scholar 

  380. Ma, X.-H., Piao, S.-F., Dey, S., Mcafee, Q., Karakousis, G., Villanueva, J., et al. (2014). Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Investig., 124(3), 1406–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. DeVorkin, L., Hattersley, M., Kim, P., Ries, J., Spowart, J., Anglesio, M. S., et al. (2017). Autophagy inhibition enhances sunitinib efficacy in clear cell ovarian carcinoma. Mol. Cancer Res, 15(3), 250–258. https://doi.org/10.1158/1541-7786.MCR-16-0132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Jhaveri, K., Wang, R., Teplinsky, E., Chandarlapaty, S., Solit, D., Cadoo, K., et al. (2017). A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res., 19(1), 1–8. https://doi.org/10.1186/s13058-017-0879-5

    Article  CAS  Google Scholar 

  383. Parris, J. L. D., Barnoud, T., Leu, J. I.-J., Leung, J. C., Ma, W., Kirven, N. A., et al. (2021). HSP70 inhibition blocks adaptive resistance and synergizes with MEK inhibition for the treatment of NRAS-mutant melanoma. Cancer Treat Res Commun, 1(1), 17–29.

    Article  CAS  Google Scholar 

  384. Nappi, L., Aguda, A. H., Al Nakouzi, N., Lelj-Garolla, B., Beraldi, E., Lallous, N., et al. (2020). Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J. Clin. Investig., 130(2), 699–714. https://doi.org/10.1172/JCI130819

    Article  CAS  PubMed  Google Scholar 

  385. Alasiri, G., Jiramongkol, Y., Trakansuebkul, S., Ke, H.-L., Mahmud, Z., Intuyod, K., & Lam, E. W.-F. (2020). Reciprocal regulation between GCN2 (eIF2AK4) and PERK (eIF2AK3) through the JNK-FOXO3 axis to modulate cancer drug resistance and clonal survival. Mol. Cell. Endocrinol., 515, 110932. https://doi.org/10.1016/j.mce.2020.110932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Lin, J.-C., Yang, P.-M., & Liu, T.-P. (2021). PERK/ATF4-dependent ZFAS1 upregulation is associated with sorafenib resistance in hepatocellular carcinoma cells. Int. J. Mol. Sci., 22(11), 5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Logue, S. E., McGrath, E. P., Cleary, P., Greene, S., Mnich, K., Almanza, A., et al. (2018). Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Comm., 9(1), 3267. https://doi.org/10.1038/s41467-018-05763-8

    Article  CAS  Google Scholar 

  388. Creedican, S., Robinson, C. M., Mnich, K., Islam, M. N., Szegezdi, E., Clifford, R., et al. (2022). Inhibition of IRE1α RNase activity sensitizes patient-derived acute myeloid leukaemia cells to proteasome inhibitors. J Cell Mol Med, 26(16), 4629–4633. https://doi.org/10.1111/jcmm.17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Huang, Y., Yuan, K., Tang, M., Yue, J., Bao, L., Wu, S., et al. (2021). Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. J Cell Mol Med, 25(3), 1480–1492.

    Article  CAS  PubMed  Google Scholar 

  390. Zhao, R., Lv, Y., Feng, T., Zhang, R., Ge, L., Pan, J., et al. (2022). ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. The Prostate, 82(5), 617–629. https://doi.org/10.1002/pros.24308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Abbreviations

ATGs, autophagy-related genes; BM, bone marrow; CQ, сhloroquine; CRC, colorectal cancer cells; CSCs, cancer stem cells; CTCs, circulating tumor cells; DAMPs, damage-associated molecular patterns; DTCs, disseminated tumor cells; DTPs, drug-tolerant persisters; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; EMT, epithelial-to-mesenchymal transition; ER, endoplasmic reticulum; ERAD, ER-associated degradation; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; GRP94, glucose-regulated protein 94 kDa; GIST, gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; HCQ, hydroxychloroquine; HNSCC, head and neck squamous cell carcinoma; HIF1α, hypoxia-inducible factor 1α; HMGB1, high-mobility group box 1; HSP, heat shock protein; LKB1, liver kinase B1; MAPK, mitogen-activated protein kinase; MICs, metastasis-initiating cells; MLCK, myosin light chain kinase; MSCs, mesenchymal stem cells; NICD, NOTCH intracellular domain; NR2F1, Orphan nuclear receptor 1; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma; PDI, protein disulfide isomerase; PDX, patient-derived xenografts; PGCCs, polyploid giant cancer cells; PSA, prostate-specific antigen; ROS, reactive oxygen species; SPARC, secreted protein acidic and rich in cysteine; TBK1, Tank binding kinase 1; TEAD, transcriptional enhanced associated domain; TICs, tumor-initiating cells; TME, tumor microenvironment; TNBC, triple-negative breast cancer; TRAP1, Tumor necrosis factor receptor-associated protein 1; UPR, unfolded protein response; YAP, YES-associated protein; ZEB2, zinc finger E-box binding homeobox 2; 3-MA, 3-methyladenine

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2020-773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar Alhasan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhasan, B., Mikeladze, M., Guzhova, I. et al. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 42, 217–254 (2023). https://doi.org/10.1007/s10555-023-10085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10085-3

Keywords

Navigation